精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(2) 346-353     DOI : 10.3969/j.issn.2096-1693.2024.02.025
最新目錄| | 過刊瀏覽| 高級檢索
基于WPD-SCA-ELM 模型的天然氣負荷短期預測
成琳琳
中國石油天然氣股份有限公司西南油氣田分公司集輸工程技術(shù)研究所,成都 610000
Short-term prediction of natural gas load based on WPD-SCA-ELM model
CHENG Linlin
PetroChina Southwest Oil & Gasfield Company Gathering & Transportation Engineering Technology Institute, Chengdu 610000, China

全文:   HTML (1 KB) 
文章導讀  
摘要  隨著天然氣消耗量的不斷增加,準確預測未來天然氣的日負荷用量對于天然氣資源的合理配置具有重要意義。針對此問題,在“分解—預測—重構(gòu)”的思想上建立了基于WPD-SCA-ELM模型的天然氣負荷預測模型,對影響小波包分解的小波基函數(shù)和分解層數(shù)進行優(yōu)選,選取了對日負荷影響較大的因素,并針對氣溫因素的滯后性進行了平移修正,最后與其余模型算法進行了對比驗證。結(jié)果表明,供暖期的日負荷數(shù)據(jù)是非正態(tài)分布,具有較大的波動性;Fk4 階2 層分解更能反映日負荷的變化趨勢和特征;日最高氣溫和日最低氣溫的相關系數(shù)均大于平均氣溫,通過對氣溫進行平移滑動操作,可提高氣溫與日負荷的相關性;WPD-SCA-ELM模型的MAPE、RMSE、DS分別為0.59、7321.87、0.9205,與其他模型相比評價指標最優(yōu),證明了該模型的科學性。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 小波分解,正余弦,極限學習機,天然氣,負荷預測
Abstract

With increasing natural gas consumption, it is of great significance to accurately predict the daily consumption load of natural gas in the future for the rational allocation of natural gas resources. To solve this problem, a natural gas load prediction model based on the WPD-SCA-ELM model was established based on the idea of “decomposing-prediction-reconstruction”. The wavelet basis function and decomposition layers affecting the wavelet packet decomposition were optimized, and the factors affecting the daily load were selected, and the temperature factor hysteresis was corrected by a translation operation. Finally, the algorithm is compared with other models. The results show that the daily load data in the heating period is not normally distributed and has great fluctuation. The Fk4-order two-layer decomposition can better reflect the variation trends and daily load characteristics. The correlation coefficients of daily maximum temperature and daily minimum temperature are larger than average temperature, and the correlation between temperature and daily load can be improved by translating and sliding the temperature. The MAPE, RMSE and DS of WPD-SCA-ELM model are 0.59, 7321 and 0.920, respectively. Compared with other models, the evaluation index is the best, which proves that the model is useful.


Key words: wavelet decomposition; sines and cosines; extreme learning machine; natural gas; load forecasting
收稿日期: 2024-04-30     
PACS:    
基金資助:
通訊作者: [email protected]
引用本文:   
成琳琳. 基于WPD-SCA-ELM模型的天然氣負荷短期預測. 石油科學通報, 2024, 02: 346-353 CHENG Linlin. Short-term prediction of natural gas load based on WPD-SCA-ELM model. Petroleum Science Bulletin, 2024, 02: 346-353.
鏈接本文:  
版權(quán)所有 2016 《石油科學通報》雜志社