精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(4) 679-689???? DOI : 10.3969/ j.issn.2096-1693.2024.04.051
最新目錄| | 過刊瀏覽| 高級檢索
基于深度自回歸神經(jīng)網(wǎng)絡(luò)的多井產(chǎn)量概率預(yù)測
韓江峽, 薛亮, 位云生, 齊亞東, 王軍磊, 陳海洋, 劉月田
1 中國石油大學(xué)( 北京) 油氣資源與工程全國重點(diǎn)實(shí)驗(yàn)室,,北京 102249 2 中國石油大學(xué)( 北京) 石油工程學(xué)院,,北京 102249 3 中國石油勘探開發(fā)研究院,,北京 100083
Multiple well production rate probabilistic forecasting using deep autoregressive recurrent networks
HAN Jiangxia, XUE Liang, WEI Yunsheng, QI Yadong, WANG Junlei, CHEN Haiyang, LIU Yuetian
1 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China 3 PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 傳統(tǒng)產(chǎn)量預(yù)測方法易受到單井生產(chǎn)歷史和模型假設(shè)條件的限制,預(yù)測結(jié)果無法量化不確定性,,難以考慮區(qū)塊其他生產(chǎn)井開發(fā)規(guī)律對目標(biāo)井的指導(dǎo)作用,無法充分利用大量相關(guān)的生產(chǎn)歷史數(shù)據(jù),。為此,,提出一種以深度自回歸神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),多井產(chǎn)量數(shù)據(jù)驅(qū)動的概率預(yù)測新模型,??紤]生產(chǎn)時間、油/套壓等動態(tài)協(xié)變量數(shù)據(jù),,結(jié)合貝葉斯推斷,,利用梯度下降算法和極大似然估計(jì)方法,得到多井共有的廣義歷史—未來產(chǎn)量概率演化模式,,實(shí)現(xiàn)基于數(shù)據(jù)驅(qū)動的多井產(chǎn)量概率預(yù)測,。利用鄂爾多斯盆地某兩個區(qū)塊943 口致密氣井的數(shù)據(jù),研究了深度自回歸神經(jīng)網(wǎng)絡(luò)模型在單井預(yù)測,、分類預(yù)測和總體區(qū)塊產(chǎn)量預(yù)測上的性能,。研究結(jié)果表明:相比傳統(tǒng)深度學(xué)習(xí)模型(LSTM),新模型利用學(xué)習(xí)得到的廣義產(chǎn)量概率演化模式與目標(biāo)井的特定產(chǎn)量歷史數(shù)據(jù)相結(jié)合,,形成“廣義+特定”的產(chǎn)量概率預(yù)測方法,平均意義上較LSTM模型相對誤差降低了45%,。分類模型較全局模型相對誤差降低了24%,,實(shí)現(xiàn)了在全局模型的基礎(chǔ)上,進(jìn)一步降低了概率預(yù)測的不確定性,,提高了特定精細(xì)分類井的預(yù)測精度,。經(jīng)過實(shí)際數(shù)據(jù)驗(yàn)證,新模型預(yù)測精度更好,,魯棒性更強(qiáng),,可以用于油氣藏多井產(chǎn)量預(yù)測分析。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 產(chǎn)量預(yù)測,多井預(yù)測,神經(jīng)網(wǎng)絡(luò),致密氣,概率預(yù)測,區(qū)塊預(yù)測
Abstract

Traditional production rate forecasting methods are often limited by the production history of individual wells and assumptions of the models, leading to unquantified uncertainties in the prediction results and difficulty in considering the guidance of development patterns from other wells in the block on the target well. Additionally, they fail to fully utilize a large amount of relevant production history data. To address these issues, a new model for probabilistic production rate forecasting driven by multi-well production data is proposed, based on deep autoregressive neural networks. This model integrates dynamic covariate data such as production time and tubing/casing pressure, and employs Bayesian inference along with gradient descent and maximum likelihood estimation methods to derive a generalized historical-future production probability evolution pattern shared among multiple wells. Through data-driven approaches, it achieves probabilistic production forecasting for multiple wells. The performance of the deep autoregressive neural network model is studied using data from 943 tight gas wells in two blocks in the Ordos Basin. Results indicate that compared to traditional deep learning models like LSTM, the new model combines the learned generalized production probability evolution pattern with specific production history data of the target well, forming a “generalized + specific” production probability prediction method. On average, it reduces the relative error by 45% compared to the LSTM model. The classification model reduces the relative error by 24% compared to the global model, further reducing the uncertainty of probability prediction based on the global model and improving the prediction accuracy of specific fine-classified wells. Through validation with actual data, the new model demonstrates better prediction accuracy and stronger robustness, making it applicable for multi-well production forecasting analysis in oil and gas reservoirs.


Key words: p;roduction rate forecasting; multiple well production rate forecasting; neural networks; tight gas; probabilistic forecasting; block production rate forecasting
收稿日期: 2024-08-30 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金(52274048)、北京市自然科學(xué)基金(3222037) 和中國石油天然氣股份有限公司“十四五”前瞻性基礎(chǔ)性科技項(xiàng)目子課題“致
密氣生產(chǎn)規(guī)律與開發(fā)接替模式研究”(2021DJ2104) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
韓江峽, 薛亮, 位云生, 齊亞東, 王軍磊, 陳海洋, 劉月田. 基于深度自回歸神經(jīng)網(wǎng)絡(luò)的多井產(chǎn)量概率預(yù)測. 石油科學(xué)通報(bào), 2024, 04: 679-689 HAN Jiangxia, XUE Liang, WEI Yunsheng, QI Yadong, WANG Junlei, CHEN Haiyang, LIU Yuetian. Multiple well production rate probabilistic forecasting using deep autoregressive recurrent networks. Petroleum Science Bulletin, 2024, 04: 679-689.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社