精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(4) 586-603???? DOI : 10.3969/j.issn.2096-1693.2024.04.044
最新目錄| | 過刊瀏覽| 高級檢索
機理和智能融合下壓裂泵壓預測及應用
李格軒, 陳志明, 胡連博, 廖新維, 張來斌
1 中國石油大學( 北京) 石油工程學院,,北京 102249 2 美國得州大學奧斯汀分校石油與地質(zhì)工程學院,得州奧斯汀 TX78712,,美國
Pump pressure prediction and application based on mechanism and intelligence
LI Gexuan, CHEN Zhiming, HU Lianbo, LIAO Xinwei, ZHANG Laibin
1 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 College of Petroleum & Geosystems Engineering, The University of Texas at Austin, Austin TX 78712, USA

全文: ? HTML (1 KB)?
文章導讀??
摘要? 我國頁巖油氣的高效開發(fā)離不開大規(guī)模壓裂技術(shù),。頁巖油氣大規(guī)模壓裂過程時間長,,壓裂砂堵事故易發(fā)生且后果嚴重,,開展其預警研究對頁巖油氣壓裂施工安全意義重大,。然而,,目前仍缺乏壓裂砂堵主控因素分析及其施工泵壓預測的有效手段,。針對此問題,,考慮壓裂機理和泵壓變化特征,建立了一套壓裂施工過程中泵壓實時預測的方法,,以開展砂堵預警研究,。首先,采用壓裂模擬器模擬壓裂全過程泵壓變化,,通過改變不同流體性質(zhì)與地層參數(shù)開展泵壓變化規(guī)律的主控因素分析,,并采用灰色關(guān)聯(lián)分析方法進行主控因素排序。其次,,基于斷裂力學,、支撐劑運移理論和長短時記憶神經(jīng)網(wǎng)絡(LSTM)模型,建立施工泵壓預測框架及模型,,形成機理和智能融合下的壓裂砂堵預警方法,,最后基于砂堵預警方法開展了現(xiàn)場壓裂砂堵預警實例應用。結(jié)果表明,,影響典型井施工泵壓的因素由主到次依次為排量,、流體黏度、主應力差,、砂濃度,、裂縫簇數(shù)及孔眼數(shù)。當其他參數(shù)不變時,,隨著流體黏度,、主應力差及排量的增大,施工泵壓增加,;隨著裂縫簇數(shù),、孔眼數(shù)及砂濃度增加,施工泵壓降低,。將該壓裂砂堵預測方法應用于礦場實際,,對壓裂砂堵事故進行判識和預警,預測砂堵時間較現(xiàn)場人工識別提前19 s,,得到相對誤差約為6.8%,。建立的砂堵智能預警方法可靠性較好,,預測泵壓與現(xiàn)場泵壓基本吻合,,實現(xiàn)了壓裂砂堵精確預警,,對頁巖油氣壓裂過程中砂堵預警具有良好的借鑒意義。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 頁巖儲層,壓裂砂堵,斷裂力學,智能預警,LSTM模型
Abstract

Efficient development of shale oil and gas in China relies on factory operations and large-scale fracturing technology. Large-scale fracturing of shale oil and gas requires a long time and numerous equipment and facilities, with frequent and severe incidents of fracturing sand blockage. The research on early warning research in these incidents is crucial for the safety of shale oil and gas fracturing operations. However, the effective methods for analyzing the main control factors of fracturing sand blockage and predicting the pump pressure during operations are lacked. To study this issue, considering the fracturing mechanism and pump pressure variation characteristics, a method for real-time prediction of pump pressure during fracturing operations has been established to conduct sand blockage early warning research here.

First, a fracturing simulator was used to simulate the entire process of pump pressure changes during fracturing. By altering different fluid properties and formation parameters, the main control factors of pump pressure variation were analyzed, and the grey correlation analysis method was used to rank these factors. Secondly, based on fracture mechanics, proppant transport theory, and the Long Short-Term Memory (LSTM) neural network model, a framework and model for predicting pump pressure during operations was established, forming a method for early warning of fracturing sand blockage under the integration of mechanism and intelligence. Finally, the early warning method for sand blockage was applied to actual field fracturing operations.

Results indicate that the factors affecting the pump pressure of a typical well, from most to least significant, are discharge rate, fluid viscosity, differential principal stress, sand concentration, number of fracture clusters, and number of perforations. When other parameters remain constant, as fluid viscosity, differential principal stress, and discharge rate increase, the pump pressure increases; as the number of fracture clusters, perforations, and sand concentration increase, the pump pressure decreases. This method can be used for the identification and early warning of fracturing sand blockage incidents in the actual field operations, which is 19 seconds earlier than on-site manual identification, with a relative error of about 6.8%. The predicted pump pressure is friendly matched with the actual field one, which is helpful in accurate early warning of fracturing sand blockage.


Key words: shale reservoir; fracturing sand blockage; fracture mechanics; intelligent early-warning; LSTM
收稿日期: 2024-08-30 ????
PACS: ? ?
基金資助:國家自然科學基金項目(No.52074322、No.52274046) 資助
通訊作者: [email protected]
引用本文: ??
李格軒, 陳志明, 胡連博, 廖新維, 張來斌. 機理和智能融合下壓裂泵壓預測及應用. 石油科學通報, 2024, 04: 586-603 LI Gexuan, CHEN Zhiming, HU Lianbo, LIAO Xinwei, ZHANG Laibin. Pump pressure prediction and application based on mechanism and intelligence. Petroleum Science Bulletin, 2024, 04: 586-603.
鏈接本文: ?
版權(quán)所有 2016 《石油科學通報》雜志社