精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(4) 574-585???? DOI : 10.3969/j.issn.2096-1693.2024.04.043
最新目錄| | 過刊瀏覽| 高級檢索
井漏風(fēng)險(xiǎn)層位鉆前智能識別方法研究
盧運(yùn)虎, 金衍, 王漢青, 耿智
1 中國石油大學(xué)( 北京) 人工智能學(xué)院,,北京 102249 2 中國石油大學(xué)( 北京) 油氣資源與工程全國重點(diǎn)實(shí)驗(yàn)室,,北京 102249 3 中國石油大學(xué)( 北京) 石油工程學(xué)院,北京 102249 4 中國石化石油勘探開發(fā)研究院油田開發(fā)研究所,,北京 102206
Research on intelligent identification method of lost circulation risk horizon before drilling
LU Yunhu, JIN Yan, WANG Hanqing, GENG Zhi.
1 College of Artificial Intelligence, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 100049, China 3 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 100049, China 4 Institute of Petroleum Production, SINOPEC Petroleum Exploration and Production Research Institute, Beijing 102206, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 井漏是復(fù)雜地層鉆井工程常遇到的工程難題,,呈現(xiàn)出頻發(fā)性,、隨機(jī)性與持續(xù)性等特征,鉆前準(zhǔn)確預(yù)測井漏風(fēng)險(xiǎn)層位對于安全鉆井顯得尤為重要,。傳統(tǒng)井漏層位分析偏重于隨鉆診斷和鉆后總結(jié),,主要采用工程數(shù)據(jù)與現(xiàn)場經(jīng)驗(yàn)相結(jié)合的手段,導(dǎo)致分析結(jié)果存在滯后性,,無法在鉆前有效指導(dǎo)鉆井工程設(shè)計(jì),。本文以地震屬性體數(shù)據(jù)和漏失工程數(shù)據(jù)為基礎(chǔ),在具有典型漏失特征單井選取的基礎(chǔ)上,,提取過井地震屬性體數(shù)據(jù),,通過時(shí)深關(guān)系將漏失與地震屬性相匹配,并采用隨機(jī)森林方法甄別優(yōu)選出與井漏預(yù)測相關(guān)性強(qiáng)的地震屬性體,,然后運(yùn)用機(jī)器學(xué)習(xí)方法中的軟投票算法建立集成學(xué)習(xí)模型,,該模型融合了邏輯回歸、隨機(jī)森林和支持向量機(jī)3 個(gè)子模型,,實(shí)現(xiàn)了多元地震屬性體與漏失工程數(shù)據(jù)之間的非線性映射關(guān)系及其對應(yīng)權(quán)重的表征,,同時(shí)獲得基于地震與工程數(shù)據(jù)融合驅(qū)動的漏失風(fēng)險(xiǎn)層位分布概率,實(shí)現(xiàn)鉆前井漏風(fēng)險(xiǎn)層位三維空間分布預(yù)測,。研究結(jié)果表明,,方差、時(shí)頻衰減,、甜點(diǎn)和均方根振幅與井漏的相關(guān)性最高,,綜合上述多種屬性體可以實(shí)現(xiàn)更為精確的井漏風(fēng)險(xiǎn)預(yù)測,,而過多增加地震屬性數(shù)據(jù)并不能顯著提升預(yù)測效果精度,相反還會增加計(jì)算成本,。與單一機(jī)器學(xué)習(xí)模型相比,集成學(xué)習(xí)模型由于融合了多個(gè)子模型的優(yōu)點(diǎn),,能夠取得更好的預(yù)測效果,。實(shí)際應(yīng)用效果表明,采用地震屬性體進(jìn)行漏失風(fēng)險(xiǎn)預(yù)測,,其精度取決于地震數(shù)據(jù)的采樣率,,井漏風(fēng)險(xiǎn)層位區(qū)域橫向預(yù)測分辨率約為25 m,縱向預(yù)測分辨率約為6 m (2 ms),,預(yù)測結(jié)果表明橫向相比于縱向更為可靠,。但由于時(shí)深關(guān)系的影響,可能導(dǎo)致縱向預(yù)測精度的偏移,。本研究能夠較好的進(jìn)行鉆前漏失預(yù)測,,為鉆前漏失預(yù)測提供了一種新的思路,對于指導(dǎo)井位部署,、井眼軌道優(yōu)化以及安全鉆井具有重要意義,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 井漏風(fēng)險(xiǎn),地震屬性體,機(jī)器學(xué)習(xí),鉆前預(yù)測,復(fù)雜地層
Abstract

Lost circulation is a common problem encountered in complex formation drilling engineering, which is characterized by frequent occurrence, randomness and persistence. Accurate prediction of potential thief zone before drilling is particularly important for safe drilling. The traditional analysis of lost circulation is focused on diagnosis while drilling and summary after drilling, mainly using the means of combining engineering data and field experience, which leads to the lag of analysis results and cannot effectively guide drilling engineering design before drilling. Based on seismic attributes and lost circulation engineering data, this paper extracted the seismic attributes of drilled wells on the basis of the selection of single wells with typical lost circulation characteristics, and selected the seismic attributes with strong correlation with lost circulation prediction by time-depth relationship and adopted random forest method to identify and select the seismic attributes with strong correlation with lost circulation prediction. Then, an ensemble learning model was established by using soft voting algorithm in machine learning method. The model integrates three sub-models named logistic regression, random forest and support vector machine, and realizes the nonlinear mapping relationship between multiple seismic attributes and lost circulation engineering data and the corresponding weight characterization. At the same time, the probability of lost circulation risk distribution driven by the fusion of seismic and engineering data is obtained, and the 3D spatial distribution prediction of pre-drilling lost circulation risk layer is realized. The results show that variance, time-frequency attenuation, sweet spot and root mean square amplitude have the highest correlation with lost circulation. Combining the above attributes can achieve more accurate lost circulation risk prediction. However, excessive addition of seismic attributes cannot significantly improve the prediction accuracy, on the contrary, it will increase the calculation cost. Compared with a single machine learning model, ensemble learning model can achieve better prediction results because it combines the advantages of multiple sub-models. The practical application results show that the accuracy of lost circulation risk prediction by using seismic attributes depends on the sampling rate of seismic data. The horizontal prediction resolution of the thief zone risk is about 25 m, and the vertical prediction resolution is about 6 m (2 ms). The prediction results show that the horizontal prediction is more reliable than the vertical prediction. However, due to the influence of time-depth relationship, the longitudinal prediction accuracy may be offset. This study provides a new way to predict pre-drilling lost circulation, which is of great significance to guide well location deployment, well trajectory optimization and safe drilling.


Key words: lost circulation risk; seismic attributes; machine learning; pre-drilling prediction; complicated formation
收稿日期: 2024-08-30 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金面上項(xiàng)目(52074314) 和國家重點(diǎn)研發(fā)計(jì)劃(2019YFA0708303) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
盧運(yùn)虎, 金衍, 王漢青, 耿智. 井漏風(fēng)險(xiǎn)層位鉆前智能識別方法研究. 石油科學(xué)通報(bào), 2024, 04: 574-585 LU Yunhu, JIN Yan, WANG Hanqing, GENG Zhi. Research on intelligent identification method of lost circulation risk horizon before drilling. Petroleum Science Bulletin, 2024, 04: 574-585.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社