精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(3) 422-433???? DOI : 10.3969/ j.issn.2096-1693.2024.03.031
最新目錄| | 過刊瀏覽| 高級檢索
多源斷控巖溶型溶洞訓(xùn)練數(shù)據(jù)集構(gòu)建和生成對抗網(wǎng)絡(luò)三維建模應(yīng)用
胡迅, 侯加根, 劉鈺銘
中國石油大學(xué)( 北京) 地球科學(xué)學(xué)院,,北京 102249
Construction of a multi-source fault-controlled karst cave training dataset and application in three-dimensional modelling using generative adversarial networks
HU Xun, HOU Jiagen, LIU Yuming
College of Geosciences, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 目前,,尚未存在全面的斷控巖溶型溶洞訓(xùn)練數(shù)據(jù)集用于深度學(xué)習(xí)建模,。本文采用基于露頭資料、地震數(shù)據(jù),、可靠的地質(zhì)模型以及基于目標(biāo)的方法研制了斷控巖溶型溶洞原型模型,,對不同來源的原型模型集進(jìn)行組合、旋轉(zhuǎn),、裁剪和優(yōu)選操作來構(gòu)建可靠且多樣的斷控巖溶型溶洞相訓(xùn)練數(shù)據(jù)集,,同時構(gòu)建相應(yīng)的虛擬井和概率體訓(xùn)練數(shù)據(jù)集,作為訓(xùn)練條件化生成對抗網(wǎng)絡(luò)的數(shù)據(jù)輸入,。將訓(xùn)練好的生成器卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用于塔河油田TH12330 井區(qū),,生成的多個斷控巖溶型溶洞地質(zhì)模型符合地質(zhì)模式,吻合條件井,、概率體數(shù)據(jù),,且與構(gòu)造、裂縫和累產(chǎn)基本一致,。本研究探索了斷控巖溶型溶洞多源訓(xùn)練數(shù)據(jù)集的構(gòu)建并在實際應(yīng)用中取得了顯著成果,,同時也為其它類型儲層深度學(xué)習(xí)建模中構(gòu)建可靠且多樣化的訓(xùn)練數(shù)據(jù)集提供了新思路。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 斷控巖溶型溶洞,訓(xùn)練數(shù)據(jù)集,生成對抗網(wǎng)絡(luò),深度學(xué)習(xí),地質(zhì)建模
Abstract

Currently, there is no comprehensive training dataset available for the modelling of fault-controlled karst caves using deep learning. In this study, we constructed prototype models for fault-controlled karst caves using outcrop data, seismic data, reliable geological models, and object-based methods. We combined, rotated, cropped, and selected prototype models from different sources to create a reliable and diverse training dataset for fault-controlled karst caves. Additionally, we constructed corresponding virtual well and probability map training datasets, all of which were used to train conditional generative adversarial networks (GANs). The trained generator convolutional neural network was applied to TH12330 well block, Tahe Oilfield. The generated multiple geological models for fault-controlled karst caves were consistent with geological patterns, conditioning well data, conditioning probability map data, and aligned with fracture structures, fractures, and cumulative production. This research explores the construction of a multisource training dataset for fault-controlled karst caves and has achieved significant success in a real application example. Furthermore, it provides new insights into building reliable and diverse training dataset for deep learning modelling in other types of reservoirs.


Key words: fault-controlled karst caves; training dataset; generative adversarial networks; deep learning; geological modelling
收稿日期: 2024-06-28 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金面上項目(42072146) 資助
通訊作者: [email protected]
引用本文: ??
胡迅, 侯加根, 劉鈺銘. 多源斷控巖溶型溶洞訓(xùn)練數(shù)據(jù)集構(gòu)建和生成對抗網(wǎng)絡(luò)三維建模應(yīng)用. 石油科學(xué)通報, 2024, 03: 422-433 HU Xun, HOU Jiagen, LIU Yuming. Construction of a multi-source fault-controlled karst cave training dataset and application in three-dimensional modelling using generative adversarial networks. Petroleum Science Bulletin, 2024, 03: 422-433.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報》雜志社