精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2023» Vol.8» Issue(6) 832-844???? DOI : 10.3969/j.issn.2096-1693.2023.06.076
最新目錄| | 過刊瀏覽| 高級(jí)檢索
基于深度殘差網(wǎng)絡(luò)的接轉(zhuǎn)站工藝流程異常工況診斷
張蕊, 侯磊, 劉珈銓, 孫省身, 張坤, 杜鑫, 李興濤
1 中國石油大學(xué)( 北京) 機(jī)械與儲(chǔ)運(yùn)工程學(xué)院,,北京 102249 2 中國石油長(zhǎng)慶油田分公司長(zhǎng)慶工程設(shè)計(jì)有限公司,西安 710021 3 中國石油長(zhǎng)慶油田分公司第十二采油廠,,合水 745000 4 中國石油國際勘探開發(fā)有限公司,,北京 102249
Abnormal operation condition diagnosis of block station based on deep residual network
ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 Changqing Engineering Design Co., Ltd , PCOC, xi’an 710021,China 3 PetroChina ChangQing Oilfield Company No.12 Oil Production Plant, Heshui 745000, China 4 China National Oil and Gas Exploration and Development Co., Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 油氣集輸站場(chǎng)是油氣田地面工程的核心部分。接轉(zhuǎn)站作為集輸系統(tǒng)的重要節(jié)點(diǎn),,既有設(shè)備集中,、運(yùn)行連續(xù)性強(qiáng)的生產(chǎn)特點(diǎn),還容易出現(xiàn)來流比例劇烈波動(dòng)和設(shè)備運(yùn)行故障等工況異常,。接轉(zhuǎn)站運(yùn)行工況的診斷對(duì)油氣生產(chǎn)系統(tǒng)至關(guān)重要,,對(duì)于簡(jiǎn)單設(shè)備的異常數(shù)據(jù),站場(chǎng)員工尚能進(jìn)行初步診斷,,但對(duì)整個(gè)站場(chǎng)的大量SCADA實(shí)時(shí)監(jiān)測(cè)數(shù)據(jù),,僅靠經(jīng)驗(yàn)和知識(shí)難以實(shí)現(xiàn)快速分析處理。與油田現(xiàn)有的閾值報(bào)警方法相比,,基于數(shù)據(jù)驅(qū)動(dòng)的診斷方法更加準(zhǔn)確智能,。在數(shù)據(jù)驅(qū)動(dòng)的方法中,深度學(xué)習(xí)方法能夠自動(dòng)提取數(shù)據(jù)非線性特征,,善于處理海量高維數(shù)據(jù),。根據(jù)某油田接轉(zhuǎn)站數(shù)據(jù)采集與監(jiān)視控制系統(tǒng)(SCADA)數(shù)據(jù)的多元時(shí)間序列特性,提出一種基于深度殘差網(wǎng)絡(luò)(DRN)的診斷方法,,以接轉(zhuǎn)站SCADA系統(tǒng)監(jiān)測(cè)數(shù)據(jù)為模型輸入,,工況類別為模型輸出建立診斷模型,,對(duì)接轉(zhuǎn)站異常工況進(jìn)行分類識(shí)別。現(xiàn)場(chǎng)數(shù)據(jù)的噪聲會(huì)降低模型對(duì)少數(shù)類樣本的識(shí)別能力,,通過小波分解對(duì)接轉(zhuǎn)站數(shù)據(jù)進(jìn)行降噪處理,減弱設(shè)備采集干擾,,增強(qiáng)模型診斷性能;采用樸素重采樣進(jìn)行數(shù)據(jù)擴(kuò)容,,緩解現(xiàn)場(chǎng)數(shù)據(jù)樣本量不足,,模型難以訓(xùn)練問題;利用正則化方法對(duì)大數(shù)值權(quán)重向量進(jìn)行懲罰,,避免模型對(duì)個(gè)別變量的依賴,。在此基礎(chǔ)上提出8 種不同DRN架構(gòu),確定適用于接轉(zhuǎn)站的最優(yōu)診斷模型,,通過多元互信息值法量化各類樣本間的相關(guān)程度,,證明診斷結(jié)果的有效性。油田現(xiàn)場(chǎng)的實(shí)際數(shù)據(jù)驗(yàn)證表明,,該方法能夠用于對(duì)接轉(zhuǎn)站工藝流程運(yùn)行狀況進(jìn)行快速準(zhǔn)確的診斷,,診斷準(zhǔn)確率達(dá)97.3%,顯著高于支持向量機(jī)(93%),、多層感知機(jī)(65%)等經(jīng)典機(jī)器學(xué)習(xí)方法,。該診斷方法對(duì)其他油氣站場(chǎng)的故障診斷和異常識(shí)別具有指導(dǎo)意義。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 工況診斷,集輸工藝,接轉(zhuǎn)站,深度殘差網(wǎng)絡(luò),小波降噪
Abstract

Oil and gas gathering station is the core part of oilfield ground engineering construction. As the important link of gathering and transportation system, the block station has the production characteristics of centralized equipment and successional production chain, and it is also prone to severe fluctuation of the inflow proportion and equipment operation faults. The diagnosis of the operation condition for block station is crucial to the oil and gas production system, for the abnormal data of simple equipment, the station staff can make a preliminary diagnosis, but for a large number of real-time SCADA monitoring data of the whole station, it is difficult to realize rapid analysis and processing only by experience and knowledge. Compared with the existing threshold alarm method in oil field, data-driven diagnostic approach is more accurate and intelligent. Among the data-driven methods, deep learning method which is good at processing massive high-dimensional data, can automatically extract the nonlinear features of data. Aimed at multiple time series characteristics of data (SCADA) in block station, a fault diagnosis method is proposed by use deep residual network (DRN). In order to identify and classify the abnormal working conditions of block station, a diagnostic model was established by taking 36 monitoring variables of the SCADA system in block station as model input and 5 working conditions as model out. The noise of field data will reduce the ability of the model to identify the working conditions with fewer samples, wavelet decomposition is used to de-noise the data of the block station to reduce the interference of equipment acquisition, enhance model diagnostic performance. Naive resampling is used to enlarge the data capacity to alleviate the difficulty in training the model caused by insufficient sample size of field data. The regularization method is used to punish the weight vector with large values to avoid the dependence of the model on individual variables. On this basis, eight different DRN architectures has proposed to select the optimal diagnostic model for the block station, and the correction between various samples is quantified according to the mutual information method, ensured the validity of the diagnosis results. Verification of real data in field shows that the method can be used quickly and accurately diagnose process status of block station. The average accuracy is 97.3%, which are significantly higher than other machine learning method like support vector machine (93%) and multilayer perceptron (65%). The method has guiding significance for fault diagnosis and anomaly identification of other oil and gas stations.

Key words: operation conditions diagnosis; gathering and transportation process; block station; deep residual network; Wavelet Denoising
收稿日期: 2023-12-29 ????
PACS: ? ?
基金資助:中國石油天然氣集團(tuán)有限公司—中國石油大學(xué)( 北京) 戰(zhàn)略合作科技專項(xiàng):“一帶一路”海外長(zhǎng)輸管道完整性關(guān)鍵技術(shù)研究與應(yīng)用
(ZLZX2020-05) 資助
通訊作者: [email protected]
引用本文: ??
張蕊, 侯磊, 劉珈銓, 孫省身, 張坤, 杜鑫, 李興濤. 基于深度殘差網(wǎng)絡(luò)的接轉(zhuǎn)站工藝流程異常工況診斷. 石油科學(xué)通報(bào), 2023, 06: 832-844. ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao. Abnormal operation condition diagnosis of block station based on deep residual network . Petroleum Science Bulletin, 2023, 05: 832-844.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社