精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁(yè)» 過(guò)刊瀏覽» 2020» Vol.5» Issue(3) 316-326???? DOI : 10.3969/j.issn.2096-1693.2020.03.027
最新目錄| | 過(guò)刊瀏覽| 高級(jí)檢索
粒子群優(yōu)化的等效基質(zhì)模量提取和橫波預(yù)測(cè)方法
王國(guó)權(quán),,陳雙全,,王恩利,,閆國(guó)亮 ,周春雷
1 中國(guó)石油大學(xué)(北京)油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,,北京 102249 2 中國(guó)石油大學(xué)(北京)物探重點(diǎn)實(shí)驗(yàn)室,,北京 102249 3 中石油勘探開(kāi)發(fā)研究院西北分院,,蘭州 730020
Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization
WANG Guoquan, CHEN Shuangquan, WANG Enli , YAN Guoliang, ZHOU Chunlei
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Geophysical Exploration, China University of Petroleum-Beijing, Beijing 102249, China 3 Research Institute of Petroleum Exploration & Development-Northwest(NWGI), PetroChina, Lanzhou 730020, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 常規(guī)橫波預(yù)測(cè)方法從基礎(chǔ)的巖石物理模型出發(fā),根據(jù)部分彈性參數(shù)與巖石物理參數(shù)間的定量關(guān)系,,確定 橫波速度對(duì)應(yīng)約束參數(shù)(如孔隙縱橫比)的解空間,,不斷搜索尋求最優(yōu)解從而確定地下每一深度點(diǎn)對(duì)應(yīng)的橫波速 度。但這樣做會(huì)存在兩點(diǎn)不足:一是簡(jiǎn)單的遍歷搜索制約了預(yù)測(cè)方法的計(jì)算效率,;二是對(duì)于缺乏礦物含量信息 的井資料而言,,巖石物理建模已經(jīng)嚴(yán)重受限,最終預(yù)測(cè)結(jié)果的精度必然會(huì)有很大影響,。為了解決這類礦物含量 未知地區(qū)進(jìn)行橫波預(yù)測(cè)所存在的計(jì)算精度和效率問(wèn)題,,論文提出基于粒子群非線性優(yōu)化算法框架下的橫波預(yù)測(cè) 策略。首先需要解決礦物基質(zhì)模量未知或不準(zhǔn)確的問(wèn)題,,即在引入干巖石泊松比σdry后根據(jù)巖石骨架模型預(yù)設(shè) 法,,確定其與基質(zhì)模量K0 的范圍,之后利用流體因子定義適應(yīng)度函數(shù),,將礦物基質(zhì)模量反演轉(zhuǎn)化為二維粒子群 尋優(yōu)問(wèn)題,,將最終得到的基質(zhì)模量作為輸入更新到粒子群優(yōu)化的橫波預(yù)測(cè)過(guò)程中。使用論文提出的橫波預(yù)測(cè)策 略,,可以很好地解決基質(zhì)模量未知的難題,,更好地利用Xu-White、Xu-Payne等巖石物理模型進(jìn)行儲(chǔ)層描述,。同 時(shí),,論文針對(duì)傳統(tǒng)方法計(jì)算效率低的問(wèn)題進(jìn)行了優(yōu)化,在基質(zhì)模量反演和橫波預(yù)測(cè)中都采用了粒子群算法來(lái)反 演約束參數(shù),。實(shí)際資料應(yīng)用結(jié)果表明:基于粒子群優(yōu)化框架下的基質(zhì)模量反演結(jié)果滿足Voigt-Reuss界限條件,, 驗(yàn)證了算法的正確性及準(zhǔn)確度。與傳統(tǒng)遍歷搜索的橫波預(yù)測(cè)對(duì)比結(jié)果表明,,在精度得到保證的情況下,,采用粒 子群優(yōu)化算法可以大大提升整個(gè)橫波預(yù)測(cè)的計(jì)算效率。
服務(wù)
把本文推薦給朋友
加入我的書(shū)架
加入引用管理器
關(guān)鍵詞 : 橫波預(yù)測(cè);粒子群算法,;基質(zhì)模量,;碳酸鹽巖;孔隙結(jié)構(gòu)
Abstract

Based on the basic petrophysical model and the quantitative relationship between some elastic parameters and petrophysical parameters, the conventional shear wave prediction method determines the solution space of shear wave velocity corresponding to the constraint parameters (such as pore aspect ratio). It constantly searches for the optimal solution to determine the corresponding shear wave velocity at each depth point underground. However, there are two obvious shortcomings: one is that a simple ergodic search restricts the computational efficiency of the shear wave prediction method, and the other is that  petrophysical modeling has been seriously limited for well data which lack mineral content information at the same time. The accuracy of the final prediction result is bound to have a great impact. Therefore, in order to solve the problems of computational  accuracy and efficiency in shear wave prediction in areas with unknown mineral content, a shear wave prediction strategy based on a particle swarm nonlinear optimization algorithm is proposed in this paper. Firstly the whole calculation process needs to solve the problem that the mineral matrix modulus is unknown or inaccurate, that is, after the introduction of the dry rock Poisson ratio σdry, the range of Poisson's ratio and matrix modulus K0 is determined according to the rock skeleton model, and then the fitness function is defined by using the difference between the two kinds of fluid factors, and the inversion problem of mineral matrix modulus is transformed into an optimization problem of a two-dimensional particle swarm. The final matrix modulus is  updated as an input to the shear wave prediction process of particle swarm optimization. Using the shear wave prediction strategy proposed in this paper, we can solve the problem of shear wave prediction when the matrix modulus is unknown, and make better use of Xu-White, Xu-Payne and other petrophysical models for reservoir description. At the same time, the paper optimizes the low computational efficiency of the traditional method, and uses the particle swarm optimization algorithm to invert the constraint parameters in the matrix modulus inversion and shear wave prediction. The application results of practical data show that the inversion results of the matrix modulus based on particle swarm optimization framework still meet the Voigt-Reuss boundary conditions, which verifies the correctness and accuracy of the algorithm. Compared with the traditional ergodic search  shear wave prediction, the results show that whenthe accuracy is guaranteed, the particle swarm optimization algorithm can    greatly improve the computational efficiency of the whole shear wave prediction.    


Key words: shear wave velocity prediction; particle swarm optimization; matrix modulus; carbonate; pore structure
收稿日期: 2020-09-28 ????
PACS: ? ?
基金資助:國(guó)家自然科學(xué)基金項(xiàng)目(41574108),、中國(guó)石油天然氣集團(tuán)公司科技項(xiàng)目(2019A-3310) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
WANG Guoquan, CHEN Shuangquan, WANG Enli, YAN Guoliang, ZHOU Chunlei. Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization. Petroleum Science Bulletin, 2020, 03: 316-326.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社