精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2019» Vol.4» Issue(1) 1-10???? DOI : 10.3969/j.issn.2096-1693.2019.01.001
最新目錄| | 過刊瀏覽| 高級檢索
基于卷積神經(jīng)網(wǎng)絡算法的自動地層對比實驗
徐朝暉1*,,劉鈺銘1,,周新茂2,何輝2,,張波3,吳昊3,,高建2
1 中國石油大學( 北京) 地球科學學院 北京 102249 2 中國石油勘探開發(fā)研究院 北京 100083 3 阿拉巴馬大學地球科學系 塔斯卡盧薩 美國 35487
An experiment in automatic stratigraphic correlation using convolutional neural networks
XU Zhaohui1, LIU Yuming1, ZHOU Xinmao2, HE Hui2, ZHANG Bo3, WU Hao3, GAO Jian2
1 College of Geosciences, China University of Petroleum-Beijing, Beijing 102249 2 Research Institute of Petroleum Exploration and Development, CNPC, Beijing 10083 3 Department of Geoscience, University of Alabama, Tuscaloosa, USA 35487

全文: ? HTML (1 KB)?
文章導讀??
摘要? 深度學習善于從原始數(shù)據(jù)輸入中挖掘其內(nèi)在的抽象特征,十余年來,,其在語音識別、語義分析,、圖像分析等領域取得了巨大成功,也大大推動了人工智能的發(fā)展,。本文基于深度學習中廣泛應用的卷積神經(jīng)網(wǎng)絡算法,以大慶油田某區(qū)塊密井網(wǎng)數(shù)據(jù)為對象,,開展自動地層對比試驗,。實驗中,隨機選取部分井作為訓練樣本,,對另一部分井分層進行預測,并與原始分層數(shù)據(jù)比對進行誤差分析,。按照訓練樣本的井數(shù)據(jù)比例65%、40%,、20%和10%,將實驗分為4 組,,每組實驗包括油層組,、砂層組和小層級3 個相互獨立的實驗,。12 個實驗結果表明:訓練量越大,,地層級別越高(厚度越厚),,自動對比效果越好;20%的訓練量就可以較可靠地進行砂組及以上級別地層單元(厚度不小于10 m)的自動對比,。該實驗表明卷積神經(jīng)網(wǎng)絡算法能有效應用于依據(jù)測井曲線進行油藏規(guī)模地層自動對比,,具有良好的發(fā)展前景,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 地層自動對比;深度學習,;卷積神經(jīng)網(wǎng)絡;訓練與預測
Abstract

Deep learning is good at extracting the inherent abstract features from input data. It has achieved great success in speech recognition, semantic analysis, image analysis and other fields in the past ten years, which has greatly promoted the development of artificial intelligence. Based on the convolutional neural networks algorithm widely used in deep learning, this paper carries out well auto-correlation experiments which take a block of Daqing Oilfield as the object. In the experiments, some wells were randomly selected as training samples and the other wells were used as tested samples to predict the welltops. The predicted welltops were compared with the original welltops for error analysis. The experiments were divided into 4 groups according to the proportion of training well data, which was 65%, 40%, 20%, and 10% respectively. Each group of experiments consisted of three independent experiments, including oil layer group, sand group, and single layers. The 12 experiment results show that the more training data and the higher stratigraphic unit (or the larger thickness) can get, the better the well auto-correlation result,and the 20% training data can reliably perform the well auto-correlation of sand group and above stratigraphic units (thickness is no less than 10m). It also indicates that the convolutional neural networks algorithm can be effectively applied to reservoir-scale well auto-correlation based on well logs and has a promising future.

Key words: automatic stratigraphic correlation; deep learning; convolutional neural networks; training and testing
收稿日期: 2019-01-11 ????
PACS: ? ?
基金資助:國家科技重大專項課題(2017ZX05009-001,、2016ZX05014-002、2016ZX05010-001) 資助
通訊作者: * 通信作者, [email protected]
引用本文: ??
徐朝暉, 劉鈺銘, 周新茂, 何輝, 張波, 吳昊, 高建. 基于卷積神經(jīng)網(wǎng)絡算法的自動地層對比實驗. 石油科學通報, 2019, 01: 1-10
鏈接本文: ?
XU Zhaohui, LIU Yuming, ZHOU Xinmao, HE Hui, ZHANG Bo, WU Hao, GAO Jian. An experiment in automatic stratigraphic correlation using convolutional neural networks. Petroleum Science Bulletin, 2019, 01: 1-10.
版權所有 2016 《石油科學通報》雜志社