精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2017» Vol. 2» Issue (3) 413-421???? DOI : 10.3969/j.issn. 2096-1693.2017.03.038
最新目錄| | 過刊瀏覽| 高級檢索
基于人工神經網絡的天然氣井產量計算方法研究
宋尚飛1,,洪炳沅1,,史博會1,,吳海浩1,,康琦1,,王智2,,宮敬1*
1 中國石油大學(北京)油氣管道輸送安全國家工程實驗室/石油工程教育部重點實驗室/城市油氣輸配技術北京市重點實驗室,,北京 102249 2 西安長慶科技工程有限責任公司,,西安 710000
Research into calculation of natural gas well production based on an artificial neural network
SONG Shangfei1, HONG Bingyuan1, SHI Bohui1, WU Haihao1, KANG Qi1, WANG Zhi2, GONG Jing1
1 National Engineering Laboratory for Pipeline Safety/ MOE Key Laboratory of Petroleum Engineering /Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China 2 Xi'an Changqing Science and Technology Engineering Co Ltd, Xi'an 710000, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 隨著石油行業(yè)不斷向海洋發(fā)展,,水下油氣生產工藝也隨之誕生,,傳統(tǒng)的技術手段面臨諸多新的問題。虛擬計量系統(tǒng)已經逐步在國內外的海上油氣田生產系統(tǒng)中開始應用,。該技術利用油氣田的常規(guī)基礎工藝參數以及從生產控制系統(tǒng)獲取的實時儀表數據,,通過多種模型實時計算出單井油氣水各相的流量。本文主要研究人工神經網絡在虛擬計量方面的應用,。由于目前常用的井筒模型不能適應產量的瞬時變化,,不能及時準確地預測產量,本文引入具有高度非線性預測能力的誤差反向傳播的人工神經網絡方法,,以人工調試后的井筒模型結果作為數據樣本庫,,模擬各種影響因素與天然氣井產量之間的映射關系,通過學習和訓練建立了基于BP神經網絡模型的天然氣井產量計算模型,。預測結果表明:該方法的計算結果與現場物理流量計測量值的相對誤差平均值為3.33%,,超過80%的數據點相對誤差處于±5%內,,預測精度較高。綜合分析表明,,人工神經網絡模型能夠滿足實際生產需要,,且該模型結構簡單,不拘泥于具體的形式,,計算量少,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 水下油氣生產工藝, 虛擬計量系統(tǒng), 人工神經網絡模型, 天然氣&mdash, 凝析液管道, 深海流動安全保障
Abstract

  With the development of the oil industry to the deep water, underwater oil and gas production process have emerged and the traditional technology is facing many new problems. An alternative method for production estimation is represented by a Virtual Metering System (VMS) based on the analysis of the standard process parameters, available in almost all production system. The software is based on a methodology in which several models are included. This article mainly studies the application of an artificial neural network in gas well measurement. Because the existing wellbore models cannot adjust to changes of production in a timely manner nor predict accurately, this article introduced an error back propagation artificial neural network with highly nonlinear predictive ability. Artificially debugged wellbore model results served as a data sample library to simulate the mapping relationship between all kinds of influence factors and the gas well production.  A gas well flow calculation model based on a back propagation neural network is set up by learning and training. Predicted results show that compared with a physical flow meter, the average relative error of the calculation results is 3.33%. More than 80% of the data points have a relative error within plus or minus 5%, which indicates a high prediction accuracy. Comprehensive analysis shows that the artificial neural network model can meet the demands of practical production with the advantages of a simple model structure, flexible form and less calculation. Application of the artificial neural network model provides a new tool and method for virtual measurement technology.

Key words: subsea production system VMS Artificial Neural Network gas-condensate pipeline deepsea flow assurance
收稿日期: 2017-05-24 ????
PACS: ? ?
基金資助:國家科技重大專項(2016ZX05028-004-001),、國家自然科學基金(51534007)、國家科技重大專項(2016ZX05066005-001),、國家重點研發(fā)計劃(2016YFS0303704,、2016YFS0303708)和中國石油大學( 北京) 科研基金(C201602) 聯合資助
通訊作者: 史博會, [email protected]; [email protected]
引用本文: ??
宋尚飛,洪炳沅,,史博會,,吳海浩,康琦,,王智,,宮敬. 基于人工神經網絡的天然氣井產量計算方法研究[J]. 石油科學通報, 2017, 2(3): 413-421. SONG Shangfei, HONG Bingyuan, SHI Bohui, WU Haihao, KANG Qi, WANG Zhi, GONG Jing. Research into calculation of natural gas well production based on an artificial neural network. Petroleum Science Bulletin, 2017, 2(3): 413-421.
鏈接本文: ?
版權所有 2016 《石油科學通報》雜志社