精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2025» Vol.10» lssue(1) 107-119???? DOI : 10.3969/j.issn.2096-1693.2025.03.004
最新目錄| | 過刊瀏覽| 高級檢索
控壓固井分段降密度環(huán)節(jié)井筒溫壓場預測模型研究
劉金璐, 李軍, 柳貢慧, 李寧, 張權(quán), 周寶, 孫紅宇
1 中國石油塔里木油田公司,,庫爾勒 841000 2 中國石油大學(北京)石油工程學院,,北京 102249 3 中國石油天然氣集團有限公司超深層復雜油氣藏勘探開發(fā)技術(shù)研發(fā)中心,,庫爾勒 841000 4 新疆維吾爾自治區(qū)超深層復雜油氣藏勘探開發(fā)工程研究中心,,庫爾勒 841000 5 新疆超深油氣重點實驗室,,庫爾勒 841000
Predictive modeling of wellbore pressure during the managed pressure cementing segmented density reduction step
LIU Jinlu, LI Jun, LIU Gonghui, LI Ning, ZHANG Quan, ZHOU Bao, SUN Hongyu
1 Petrochina Tarim Oilfield company, Korla 841000, China 2 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China 3 R&D Center for Ultra Deep Complex Reservior Exploration and Development, CNPC, Korla 841000, China 4 Engineering Research Center for Ultra-deep Complex Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, China 5 Xinjiang Key Laboratory of Ultra-deep Oil and Gas, Korla 841000, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 控壓降密度是控壓固井技術(shù)的關(guān)鍵環(huán)節(jié),,該環(huán)節(jié)對保證固井施工安全具有重要意義,??貕航得芏裙に嚳煞譃橐淮谓得芏裙に嚭头侄谓得芏裙に?,在現(xiàn)場應用中,,分段降密度工藝的適用性更強、需求量更高,,因此如何精確預測分段降密度過程中的井筒壓力場成為了該技術(shù)的關(guān)鍵,。結(jié)合“先下后降、再下再降”的分段降密度工序,,采用拉格朗日法推導了環(huán)空漿柱結(jié)構(gòu)描述方程,。開展了高溫(220 ℃)、高壓(180 MPa) 鉆井液流變性實驗,,研究發(fā)現(xiàn):當溫度小于140 ℃時,,溫度對流變性影響顯著;當溫度大于140 ℃時,,溫度對流變性影響較小,。對此,考慮溫度,、壓力和流變性的相互影響,,建立了分段降密度全過程井筒溫壓場預測模型,。利用實測井口壓力對模型進行了驗證,最大相對誤差小于3.6%,。與傳統(tǒng)模型相比,,本文模型彌補了其工藝適用性的不足,且預測精度更高,?;赬井數(shù)據(jù)對兩種分段降密度工藝的關(guān)鍵參數(shù)進行了預測,結(jié)果表明:環(huán)空流體類型分布受初始漿柱結(jié)構(gòu),、排量等因素的綜合影響,,三次降密度作業(yè)所需的時間分別為5.24 h、5.12 h,、4.78 h,;井筒溫度場受工況影響明顯,不同工況相同位置處的環(huán)空溫度最大相差35.1 ℃,;三次降密度工藝所需時間多1.42 h,,但在第一次降密度過程中井底壓力較低,不易壓漏地層,;利用本文模型設計的井口回壓,,可以保證井底壓力處于安全范圍內(nèi)。研究結(jié)果可為控壓固井分段降密度環(huán)節(jié)井筒壓力的準確預測及精細控制提供理論支撐,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 控壓固井,分段降密度環(huán)節(jié),鉆井液流變性,井筒溫度,井筒壓力
Abstract

Managed pressure density reduction is the key step of managed pressure cementing (MPC) technology, which is of great significance to ensure the safety of cementing construction. Managed pressure density reduction process can be divided into primary density reduction process and segmental density reduction process. In the field application, the segmental density reduction process is more applicable and in higher demand, so how to accurately predict the pressure field of the wellbore in the process of segmental density reduction has become the key of this technology. Combined with the segmented density reduction process which is“first down, then down, then down again”, the Lagrangian method was used to deduce the descriptive equation for the structure of the annular slurry column. Experiments on the rheology of drilling fluid at high temperature (220 ) and high pressure (180 MPa) were carried out. It was found that when the temperature was less than 140 , the temperature had a significant effect on the rheology; when the temperature was greater than 140 , the temperature had a smaller effect on the rheology. In this regard, considering the mutual influence of temperature, pressure and rheology, a prediction model of temperature and pressure field in the wellbore during the whole process of segmented density reduction was established. The model was validated using the measured wellhead pressure, and the maximum relative error was less than 3.6%. Compared with the traditional model, the model in this paper makes up for the lack of its process applicability and has higher prediction accuracy. Based on the well X data, the key parameters of the two segmented density reduction processes are predicted, and the results show that: the distribution of fluid type in the annulus is affected by the initial slurry column structure, displacement and other factors, and the time required for the three density reduction operations is 5.24 h, 5.12 h and 4.78 h, respectively; the wellbore temperature field is significantly affected by the working conditions, and the maximal difference in the annulus temperature at the same location under different working conditions is 35.1 ; the time required for the three density reduction processes is more 1.42 h, but in the first density reduction process, the bottomhole pressure is lower, so it is not easy to leak the formation; using the model in this paper to design the wellhead back pressure, the bottom hole pressure can be guaranteed within the safe range. The results of the study can provide theoretical support for accurate prediction and fine control of wellbore pressure during the MPC segmental density reduction stage.

Key words: managed pressure cementing(MPC); segmented density reduction step; drilling fluid rheology; wellbore temperature; wellbore pressure
收稿日期: 2025-02-26 ????
PACS: ? ?
基金資助:國家自然科學基金重大科研儀器研制項目“鉆井復雜工況井下實時智能識別系統(tǒng)研制”(52227804),、國家自然科學基金聯(lián)合基金項目“特深井復雜溫壓場測量與井筒壓力剖面控制基礎研究”(U22B2072) 和中國石油天然氣集團有限公司科技項目“海相碳酸鹽巖油氣規(guī)模增儲上產(chǎn)與勘探開發(fā)技術(shù)研究”(2023ZZ16) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
劉金璐, 李軍, 柳貢慧, 李寧, 張權(quán), 周寶, 孫紅宇. 控壓固井分段降密度環(huán)節(jié)井筒溫壓場預測模型研究. 石油科學通報, 2025, 10(01): 107-119 LIU Jinlu, LI Jun, LIU Gonghui, LI Ning, ZHANG Quan, ZHOU Bao, SUN Hongyu. Predictive modeling of wellbore pressure during the managed pressure cementing segmented density reduction step. Petroleum Science Bulletin, 2025, 10(01): 107-119.
鏈接本文: ?
版權(quán)所有 2016 《石油科學通報》雜志社