精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁(yè)» 過刊瀏覽» 2025» Vol.10» lssue(1) 75-86???? DOI : 10.3969/j.issn.2096-1693.2025.01.003
最新目錄| | 過刊瀏覽| 高級(jí)檢索
基于深度學(xué)習(xí)數(shù)據(jù)融合的測(cè)井?dāng)?shù)據(jù)精細(xì)表征
孫正心, 金衍, 孟翰, 郭旭洋.
1 中國(guó)石油大學(xué)( 北京) 人工智能學(xué)院,北京102249 2 中國(guó)石油大學(xué)( 北京) 油氣資源與工程全國(guó)重點(diǎn)實(shí)驗(yàn)室,,北京102249 3 中國(guó)石油大學(xué)( 北京) 石油工程學(xué)院,,北京102249
Fine characterization of logging data based on the deep learning data fusion
SUN Zhengxin, JIN Yan, MENG Han, GUO Xuyang.
1 College of Artificial Intelligence, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China 3 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 測(cè)井曲線記錄鉆井過程中地層的物理參數(shù),在研究巖石特性,、評(píng)估油氣藏資源及揭示儲(chǔ)層分布等方面具有重要意義,。隨著油氣勘探的深入,隱蔽油氣藏的復(fù)雜性不斷增加,,而傳統(tǒng)測(cè)井?dāng)?shù)據(jù)分辨率較低的局限性,,難以滿足薄互層儲(chǔ)層改造選點(diǎn)的需求,亟待開發(fā)高分辨率的測(cè)井?dāng)?shù)據(jù)精細(xì)解釋方法,。本研究提出了一種基于ResNet50 回歸算法的儲(chǔ)層預(yù)測(cè)模型,。該模型將能夠捕捉復(fù)雜垂向地質(zhì)細(xì)節(jié)的縱向連續(xù)光學(xué)薄片數(shù)據(jù),與5 種常規(guī)測(cè)井參數(shù)相結(jié)合,,提升儲(chǔ)層分析的精度,。通過對(duì)某井區(qū)二疊系地層的5 個(gè)井段數(shù)據(jù)進(jìn)行驗(yàn)證,使用連續(xù)的570張地層圖片樣本與測(cè)井?dāng)?shù)據(jù)進(jìn)行訓(xùn)練與預(yù)測(cè),,模型將測(cè)井?dāng)?shù)據(jù)分辨率從12.5 cm提升至6.25 cm,,顯著提高了測(cè)井?dāng)?shù)據(jù)的精度和分辨率。本研究使用3 種公認(rèn)的定量評(píng)估指標(biāo)決定系數(shù)(R2),、均方根誤差(RMSE)和平均絕對(duì)誤差(MAE)對(duì)模型性能進(jìn)行了全面評(píng)估,。結(jié)果表明,該模型在聲波時(shí)差(AC)、補(bǔ)償中子(CNL),、電阻率(RT)和伽馬(GR)參數(shù)的預(yù)測(cè)中表現(xiàn)較為準(zhǔn)確,,平均誤差低于0.094,展示出模型在預(yù)測(cè)精度上的可靠性與優(yōu)異性,。然而,,在密度(DEN)參數(shù)的預(yù)測(cè)中,模型在巖性變化較大或地質(zhì)條件復(fù)雜的井段中受到了一定影響,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 數(shù)據(jù)融合,測(cè)井參數(shù)精細(xì)表征,ResNet50,深度學(xué)習(xí)模型,儲(chǔ)層精細(xì)化建模
Abstract

Well logging curves are essential for recording the physical parameters of formations during drilling, providing vital information for analyzing rock properties, evaluating hydrocarbon reservoirs, and understanding reservoir distribution. As oil and gas exploration continues to progress, the complexity of subtle and hidden reservoirs has increased, posing challenges for traditional exploration techniques. Despite their importance, conventional well logging data suffer from low resolution, which significantly limits their ability to address the requirements of detailed reservoir characterization. In particular, the inability to precisely identify modification points in thin interbedded reservoirs remains a critical bottleneck in reservoir analysis. To overcome these limitations, developing high-resolution interpretation methods for well logging data has become an urgent priority in the field of reservoir analysis and geological exploration. This study proposes a novel reservoir prediction model based on the ResNet50 regression algorithm. By integrating vertically continuous optical thin-section data, which can capture fine-scale and complex vertical geological features, with five conventional well logging parameters, the proposed model aims to improve the resolution and accuracy of reservoir analysis. This combination leverages the strengths of image-based geological analysis and traditional well logging to deliver a more precise interpretation of subsurface formations. The model was validated using data collected from five intervals of the Permian formation in a specific well area. A total of 570 continuous geological image samples, combined with their corresponding well logging data, were utilized for model training and prediction. The results demonstrate that the model effectively enhances the resolution of well logging data, improving it from the traditional 12.5 cm to 6.25 cm. This significant improvement not only increases the precision of well logging interpretation but also provides a more detailed understanding of reservoir characteristics. The model’s performance was rigorously evaluated using three widely recognized metrics: the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The results revealed that the model excels in predicting parameters such as acoustic time (AC), compensated neutron (CNL), resistivity (RT), and gamma ray (GR), achieving an average prediction error below 0.094. This highlights the model’s reliability and superior performance in reservoir prediction tasks. However, challenges remain in predicting density (DEN), where the model’s accuracy is impacted in intervals with significant lithological heterogeneity or complex geological conditions.

Key words: data fusion; fine characterization of logging parameters; ResNet50; deep learning model; fine reservoir modeling
收稿日期: 2025-02-26 ????
PACS: ? ?
基金資助:國(guó)家自然科學(xué)基金面上項(xiàng)目“深層脆性頁(yè)巖井壁失穩(wěn)的化學(xué)斷裂機(jī)理與控制研究”(52074314) 資助
通訊作者: [email protected]
引用本文: ??
孫正心, 金衍, 孟翰, 郭旭洋. 基于深度學(xué)習(xí)數(shù)據(jù)融合的測(cè)井?dāng)?shù)據(jù)精細(xì)表征. 石油科學(xué)通報(bào), 2025, 10(01): 75-86 SUN Zhengxin, JIN Yan, MENG Han, GUO Xuyang. Fine characterization of logging data based on the deep learning data fusion. Petroleum Science Bulletin, 2025, 10(01): 75-86.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社