精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(5) 724-736???? DOI : 10.3969/j.issn.2096-1693.2024.05.055
最新目錄| | 過刊瀏覽| 高級檢索
基于MLP-CNN 的固井質(zhì)量智能評價方法
王正,,宋先知*,李根生,,潘濤,,李臻,,祝兆鵬
1 中國石油大學( 北京) 石油工程學院,北京 102249 2 中國石油大學( 北京) 油氣資源與工程全國重點實驗室,,北京 102249 3 中國石油大學( 北京) 機械與儲運工程學院,,北京 102249
Intelligent evaluation method for cementing quality based on MLPCNN
WANG Zheng, SONG Xianzhi, LI Gensheng, PAN Tao, LI Zhen, ZHU Zhaopeng
1 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Oil and Gas Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China 3 College of Mechanical and Storage Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 固井質(zhì)量的好壞關(guān)系到油氣井的產(chǎn)量和壽命,目前最常用的方法是使用聲幅—變密度測井進行評估,,但 是解釋過程復雜,,且與重大風險相關(guān)的決策需要根據(jù)固井解釋結(jié)果做出。因此,,固井質(zhì)量評價必須由經(jīng)驗豐富的專家進行解釋,,耗時耗力。為了提高固井解釋的效率,,本文基于VGG,、ResNet等卷積神經(jīng)網(wǎng)絡(luò)對固井質(zhì)量進行自動解釋,但是準確率不足,。于是,,本文提出一種多層感知機和卷積神經(jīng)網(wǎng)絡(luò)并聯(lián)的方法(MLP-CNN),聲幅數(shù)據(jù)輸入到多層感知機中,,變密度圖輸入卷積神經(jīng)網(wǎng)絡(luò)中,;針對變密度圖存在不同尺度信息的特征(條紋的粗細、明暗,、形狀),,本文修改了卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),,設(shè)置了大小不同的卷積核,提取不同尺度信息,。本文使用了塔里木油田富源區(qū)塊的9000 個數(shù)據(jù)進行訓練和驗證,,結(jié)果表明,相較于傳統(tǒng)的VGG,、ResNet等卷積網(wǎng)絡(luò),,MLP 和CNN并聯(lián)網(wǎng)絡(luò)有效提高了固井質(zhì)量識別的準確率,評價精度為90%,,并且相較于單一尺度卷積核,,多個大小不同卷積核的卷積神經(jīng)網(wǎng)絡(luò)算法更適合于固井變密度圖像特征的提取,本文修改了卷積神經(jīng)網(wǎng)絡(luò)部分結(jié)構(gòu),,建立的帶有3 個尺寸不同卷積核的MLP-CNN神經(jīng)網(wǎng)絡(luò)比單一卷積核的MLP-CNN模型提高了5%的準確率,;同時,本文對比了7 種網(wǎng)絡(luò)的時間復雜度和空間復雜度,,結(jié)果表明,,MLP-CNN并聯(lián)網(wǎng)絡(luò)能有效避免大量的無效卷積,節(jié)省了模型計算成本,,提高模型的計算效率,。最后,為了測試模型的遷移性,,本文使用塔里木油田滿深和躍滿區(qū)塊的6 萬條數(shù)據(jù)進行了測試,,評價準確率達89.16%,遷移效果良好,,模型具有較強的魯棒性,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 固井質(zhì)量評價,深度學習,卷積神經(jīng)網(wǎng)絡(luò),多層感知機,圖像特征提取
Abstract

The quality of cementing is crucial for the production efficiency and lifespan of oil and gas wells. Currently, the most widely used method is acoustic amplitude variable density logging for evaluation. However, the interpretation process is complex, and decisions related to major risks need to be made based on the results of cementing interpretation. Therefore, the evaluation of cementing quality must be undertaken by experienced experts, which is time-consuming and labor-intensive. In order to improve the efficiency of cementing interpretation, we used convolutional neural networks such as VGG and ResNet to automatically interpret cementing quality, but the accuracy was insufficient. Therefore, we proposes a method of parallel connection between multi-layer perceptions and convolutional neural networks (MLP-CNN), where acoustic amplitude data is input into multi-layer perceptions and variable density logging images are input into convolutional neural networks; We modifies the structure of convolutional neural networks by setting convolutional kernels of different sizes to extract information at different scales for features with varying density maps, such as the thickness, brightness, and shape of stripes. We used 9000 data from the Fuyuan block of the Tarim Oilfield for training and validation. The results showed that compared to traditional convolutional networks such as VGG and ResNet, the MLP and CNN parallel networks effectively improved the accuracy of cementing quality recognition, with an evaluation accuracy of 90%. Furthermore, compared to a single scale convolutional kernel, the convolutional neural network algorithm with multiple convolutional kernels of different sizes is more suitable for extracting features from variable density cementing images. We modified the structure of the convolutional neural network and established an MLP-CNN neural network with three convolutional kernels of different sizes, which improved the accuracy by 5% compared to the MLPCNN model with a single convolutional kernel; meanwhile, we compared the time complexity and spatial complexity of seven networks. The findings revealed that the MLP-CNN parallel network efficiently mitigates a substantial number of ineffective convolutions, thereby reducing model computational costs and enhancing computational efficiency. Finally, in order to test the transferability of the model, we used 60000 data from the Manshen and Yueman blocks of the Tarim Oilfield for testing, and the evaluation accuracy reached 89%, indicating a satisfactory migration effect and robust performance of the model.


Key words: cementing quality evaluation; deep learning; convolutional neural network; multi-layer perceptron ; image feature extraction
收稿日期: 2024-10-31 ????
PACS: ? ?
基金資助:國家自然科學基金委員會國家自然科學基金- 國家杰出青年科學基金(52125401) 資助
通訊作者: [email protected]
引用本文: ??
王正, 宋先知, 李根生, 潘濤, 李臻, 祝兆鵬. 基于MLP-CNN的固井質(zhì)量智能評價方法. 石油科學通報, 2024, 09(05): 724-736 WANG Zheng, SONG Xianzhi, LI Gensheng, PAN Tao, LI Zhen, ZHU Zhaopeng. Intelligent evaluation method for cementing quality based on MLP-CNN. Petroleum Science Bulletin, 2024, 09(05): 724-736.
鏈接本文: ?
版權(quán)所有 2016 《石油科學通報》雜志社