精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(3) 365-382???? DOI : 10.3969/j.issn.2096-1693.2024.03.027
最新目錄| | 過刊瀏覽| 高級檢索
地質(zhì)力學(xué)參數(shù)智能預(yù)測技術(shù)進展與發(fā)展方向
馬天壽, 張東洋, 陸燈云, 謝祥鋒, 劉陽.
1 西南石油大學(xué)油氣藏地質(zhì)及開發(fā)工程全國重點實驗室,,成都 610500 2 中國石油川慶鉆探工程有限公司,,成都 610501 3 西南石油大學(xué)石油天然氣裝備教育部重點實驗室,,成都 610500
Progress and development direction of intelligent prediction technology of geomechanical parameters
MA Tianshou, ZHANG Dongyang, LU Dengyun, XIE Xiangfeng, LIU Yang
1 National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2 CNPC Chuanqing Drilling Engineering Co. Ltd., Chengdu 610051, China 3 MOE Key Laboratory of Oil & Gas Equipment, Southwest Petroleum University, Chengdu 610500, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 隨著人工智能技術(shù)在油氣勘探領(lǐng)域應(yīng)用的不斷深入,,地質(zhì)力學(xué)參數(shù)預(yù)測從傳統(tǒng)方法向智能化轉(zhuǎn)型已成為必然趨勢,。本文系統(tǒng)歸納分析了機器學(xué)習(xí)算法在巖石力學(xué)參數(shù)直接與間接預(yù)測,,地層孔隙壓力鉆前預(yù)測,、隨鉆監(jiān)測和鉆后評估,,一維地應(yīng)力和三維地應(yīng)力場預(yù)測中的應(yīng)用現(xiàn)狀,,對比了不同預(yù)測任務(wù)下的機器學(xué)習(xí)模型,、輸入?yún)?shù)、樣本數(shù)據(jù)量,、輸出參數(shù)以及模型預(yù)測性能,。研究發(fā)現(xiàn):相比于室內(nèi)試驗、現(xiàn)場測試和經(jīng)驗?zāi)P陀嬎?,機器學(xué)習(xí)算法在地質(zhì)力學(xué)參數(shù)預(yù)測方面的準(zhǔn)確性,、時效性和適用性具有明顯優(yōu)勢,;集成模型、深度學(xué)習(xí)模型和物理約束神經(jīng)網(wǎng)絡(luò)模型憑借其準(zhǔn)確性,、魯棒性,、泛化能力和可解釋性,已成為當(dāng)前研究的熱點和重點,;但現(xiàn)有研究以一維地質(zhì)力學(xué)參數(shù)的鉆后預(yù)測為主,,因而無法有效進行鉆前和隨鉆三維地質(zhì)力學(xué)參數(shù)預(yù)測。為了加快地質(zhì)力學(xué)參數(shù)向智能化,、數(shù)字化轉(zhuǎn)型,,本文提出了一種地質(zhì)力學(xué)參數(shù)智能預(yù)測框架,該框架考慮地震,、測井,、錄井等多源數(shù)據(jù)對地質(zhì)力學(xué)參數(shù)預(yù)測的影響,,通過數(shù)據(jù)+物理雙驅(qū)動的機器學(xué)習(xí)模型進行三維地質(zhì)力學(xué)參數(shù)的預(yù)測,,并通過正鉆井?dāng)?shù)據(jù)進行模型的實時更新,從而實現(xiàn)區(qū)域三維地質(zhì)力學(xué)參數(shù)的鉆前預(yù)測,、隨鉆監(jiān)測以及鉆后評估,。此外,分析了地質(zhì)力學(xué)參數(shù)智能預(yù)測面臨的關(guān)鍵技術(shù)難題:①實現(xiàn)非結(jié)構(gòu)化數(shù)據(jù)類型的轉(zhuǎn)換,,降低數(shù)據(jù)集復(fù)雜度,,確保數(shù)據(jù)的一致性和可比性;②開展多源數(shù)據(jù)融合研究,,構(gòu)建包括地震,、測井、錄井,、室內(nèi)試驗,、現(xiàn)場測試等方面的多源數(shù)據(jù)集,并進行數(shù)據(jù)處理,、特征選擇等工作,;③加強機器學(xué)習(xí)模型研究以提升性能,采用集成模型提升預(yù)測精度,,融入機理模型和領(lǐng)域知識提升模型魯棒性和可解釋性,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 地質(zhì)力學(xué),智能預(yù)測,機器學(xué)習(xí),巖石力學(xué),地層壓力,地應(yīng)力
Abstract

The progressive application of artificial intelligence technology within oil and gas exploration has resulted in an inevitable shift towards the transformation of geomechanical parameter prediction from a traditional to an intelligent approach. This paper presents a comprehensive review and critical analysis of machine learning algorithms in the direct and indirect prediction of rock mechanics parameters, pre-drilling prediction, monitoring while drilling and post-drilling evaluation of formation pore pressure, 1D in-situ stresses and 3D in-situ stresses field prediction. Furthermore, the paper compared machine learning models, input parameters, sample data volume, output parameters, and model prediction performance under different tasks. It has been demonstrated that machine learning algorithms exhibit superior performance in terms of accuracy, timeliness, and applicability in geomechanical parameter prediction compared to laboratory tests, field tests, and empirical model calculations. The current research emphasis is on hybrid models, deep learning models, and physical-constrained neural network models, which have been validated as highly accurate, robust, capable of generalization, and easily interpretable. However, the existing research primarily concerns the prediction of 1D geomechanical parameters post-drilling. Consequently, it is not possible to effectively predict 3D geomechanical parameters prior to drilling or during the drilling process. In order to facilitate the digital and intelligent transformation of geomechanical parameters, an intelligent prediction framework for geomechanical parameters is proposed in this paper. This framework considers the influence of multi-source data, including seismic, logging, and mud log data on the prediction of geomechanical parameters. The machine learning model, which is driven by data and physics, enables the prediction of 3D geomechanical parameters. This model is updated in real-time through the most recent drilling data, thus allowing for the pre-drilling prediction, monitoring while drilling and post-drilling evaluation of regional 3D geomechanical parameters. In addition, the key technical problems facing the intelligent prediction of geomechanical parameters are identified: (1) The transformation of unstructured data types should be minimized, the complexity of the data set should be reduced, and the consistency and comparability of the data should be ensured. (2) Multi-source data fusion should be conducted, and multi-source data sets, including seismic, logging, mud log, laboratory tests, and field test data, should be constructed. Subsequently, data processing and feature selection should be performed. (3) Machine learning models should be enhanced to improve performance, integrated models should be adopted to improve prediction accuracy, and mechanism models and domain knowledge should be integrated to enhance model robustness and explainability.


Key words: geomechanics; intelligent prediction; machine learning; rock mechanics; formation pressure; in-situ stress
收稿日期: 2024-06-28 ????
PACS: ? ?
基金資助:四川省杰出青年科技人才項目(2020JDJQ0055),、四川省自然科學(xué)基金重點項目(2024NSFC0023) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
馬天壽, 張東洋, 陸燈云, 謝祥鋒, 劉陽. 地質(zhì)力學(xué)參數(shù)智能預(yù)測技術(shù)進展與發(fā)展方向. 石油科學(xué)通報, 2024, 03: 365-382 MA Tianshou, ZHANG Dongyang, LU Dengyun, XIE Xiangfeng, LIU Yang. Progress and development direction of intelligent prediction technology of geomechanical parameters. Petroleum Science Bulletin, 2024, 03: 365-382.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報》雜志社