精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(1) 35-49???? DOI : 10.3969/j.issn.2096-1693.2024.01.003
最新目錄| | 過刊瀏覽| 高級檢索
基于注意力機制的無監(jiān)督學(xué)習(xí)地震數(shù)據(jù)隨機和不規(guī)則噪聲衰減方法
楊柳青, 王守東, 杜寶強
1 中國石油大學(xué)( 北京) 油氣資源與探測國家重點實驗室,北京 102249 2 中國石油大學(xué)( 北京) 海洋石油勘探國家工程實驗室,北京 102249
Attention mechanism-based unsupervised learning seismic data random and erratic noise attention framework
YANG Liuqing, WANG Shoudong, DU Baoqiang
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing, 102249, China 2 National Engineering Laboratory of Offshore Oil Exploration, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 地震勘探在野外采集到的地震數(shù)據(jù)受隨機噪聲和相干噪聲的干擾而導(dǎo)致信噪比被降低,,從而影響地震資料的后續(xù)處理,,例如地震偏移和成像。因此,開發(fā)一種高效且自適應(yīng)的方法來衰減地震數(shù)據(jù)中的隨機與相干噪聲是必要的。常規(guī)的監(jiān)督學(xué)習(xí)算法需要人工生成大量標(biāo)簽來訓(xùn)練網(wǎng)絡(luò),這對于數(shù)據(jù)體量較小的地震勘探領(lǐng)域是十分困難的,。此外,基于監(jiān)督學(xué)習(xí)的噪聲衰減方法在計算和人力成本上十分昂貴。為了解決該問題,,本文構(gòu)建了一種基于無監(jiān)督學(xué)習(xí)策略的自適應(yīng)深度學(xué)習(xí)框架來衰減多維地震數(shù)據(jù)中的隨機和不規(guī)則(異常值)噪聲,。該方法采用編碼和解碼相對應(yīng)的結(jié)構(gòu)來壓縮和重構(gòu)數(shù)據(jù)特征。為了提高網(wǎng)絡(luò)對重要波形特征的關(guān)注,,本文采用軟注意力機制以加權(quán)的方式給重要的波形特征分配更大的權(quán)重,。本文采用小尺度地震數(shù)據(jù)分割技術(shù)將多維含噪數(shù)據(jù)分割為大量一維信號輸入到網(wǎng)絡(luò)進行迭代,從而自適應(yīng)的衰減地震數(shù)據(jù)中的隨機和異常值噪聲,。這種小尺度信號去噪方法可以有效地提升網(wǎng)絡(luò)的噪聲衰減表現(xiàn),,并有助于避免產(chǎn)生偽影。本文采用更具魯棒性的Huber損失函數(shù)來衰減隨機和異常值噪聲,,該損失函數(shù)結(jié)合了帶有l(wèi)2 范數(shù)的均方根誤差和l1 范數(shù)的平均絕對誤差損失,。此外,在構(gòu)建的網(wǎng)絡(luò)中加入總變分(Total Variation, TV)正則化項來捕捉地震資料的局部光滑結(jié)構(gòu),。通過實驗調(diào)整Huber損失函數(shù)與TV正則化項的權(quán)重,,使得網(wǎng)絡(luò)獲取最佳的去噪表現(xiàn)。本文構(gòu)建的方法可直接用于多維地震數(shù)據(jù)的隨機和異常值噪聲衰減,,并保證重構(gòu)后地震信號的橫向連續(xù)性,。我們將提出的框架與經(jīng)典的地震數(shù)據(jù)去噪方法和基于無監(jiān)督學(xué)習(xí)的噪聲衰減方法進行去噪對比來分析各方法的優(yōu)劣。二維和三維合成數(shù)據(jù)與實際地震數(shù)據(jù)的測試結(jié)果表明本文提出的方法具有更好的噪聲衰減和有效信號保護能力,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 深度學(xué)習(xí),無監(jiān)督學(xué)習(xí),注意力機制,隨機噪聲,相干噪聲
Abstract

Random noise and coherent noise interfere with seismic data collected in the field, resulting in the reduction of the signal-to-noise ratio, which affects the subsequent processing of seismic data, such as seismic migration and imaging. Therefore, it is necessary to develop an efficient and adaptive method to attenuate random and coherent noise in real seismic data. Conventional supervised learning algorithms need to manually generate a large number of labels to train the network, which is very difficult in the field of seismic exploration where the data volume is small. In addition, supervised learning-based noise attenuation methods are expensive in terms of computation and labor costs. To solve this problem, this paper constructs an adaptive deep learning framework based on unsupervised learning strategies to attenuate random and irregular (erratic) noise in multi-dimensional seismic data. This method uses the corresponding structure of encoding and decoding to compress and reconstruct data features. In order to improve the network's attention to important waveform features, this paper uses a soft attention mechanism to assign more weight to important waveform features in a weighted way. In this paper, the multi-dimensional noisy data is segmented into a large number of one-dimensional noisy signals, which are input into the network for iteration, so as to adaptively attenuate random and erratic noise in seismic data. This small-scale signal denoising method can effectively improve the noise attenuation performance of the network and help to avoid artifacts. In this paper, we use a more robust Huber loss function to attenuate random and erratic noise, which combines the root-mean-square error with l2 norm and the average absolute error loss with l1 norm. In addition, a Total Variation (TV) regularization term is added to the constructed network to capture the local smooth structure of the seismic data. By adjusting the weight of Huber loss function and TV regularization term, the network can obtain the best denoising performance. The method constructed in this paper can be directly used for attenuation of random and erratic noise of multi-dimensional seismic data, and ensure transverse continuity of seismic signals after reconstruction. We compare the proposed framework with classical seismic data denoising methods and noise attenuation methods based on unsupervised learning to analyze the advantages and disadvantages of each method. The test results of 2D and 3D synthetic data and actual seismic data show that the proposed method has better noise attenuation and useful signal protection capabilities.

Key words: deep learning; unsupervised learning; attention mechanism; random noise; coherent noise
收稿日期: 2024-02-29 ????
PACS: ? ?
基金資助:國家重點研發(fā)計劃(2019YFC0312003),,中國石油天然氣集團有限公司- 中國石油大學(xué)( 北京) 戰(zhàn)略合作科技專項(ZLZX2020-03) 和中國石油天然氣集團有限公司科技管理部( 物探應(yīng)用基礎(chǔ)實驗和前沿理論方法研究2022DQ0604-04) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
楊柳青, 王守東, 杜寶強. 基于注意力機制的無監(jiān)督學(xué)習(xí)地震數(shù)據(jù)隨機和不規(guī)則噪聲衰減方法. 石油科學(xué)通報, 2024, 01: 35-49 YANG Liuqing, WANG Shoudong, DU Baoqiang. Attention mechanism-based unsupervised learning seismic data random and erratic noise attention frameworkPetroleum Science Bulletin, 2023, 05: 35-49.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報》雜志社