精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2024» Vol.9» lssue(1) 148-157???? DOI : 10.3969/j.issn.2096-1693.2024.01.011
最新目錄| | 過刊瀏覽| 高級檢索
基于CAE-TSNE 的成品油管道運(yùn)行工況識別
鄭堅(jiān)欽, 杜漸, 梁永圖, 趙偉, 王昌, 丁鵬, 吳全
1 中國石油規(guī)劃總院,北京 100083 2 中國石油大學(xué)( 北京) 機(jī)械與儲運(yùn)工程學(xué)院,北京 102249 3 浙江大學(xué)浙江省飲用水安全與輸配技術(shù)重點(diǎn)實(shí)驗(yàn)室,,杭州 310058
Research on pipeline operating condition recognition based on CAETSNE
ZHENG Jianqin, DU Jian, LIANG Yongtu, ZHAO Wei, WANG Chang, DING Peng, WU Quan
1 PetroChina Planning & Engineering Institute, Beijing 100083, China 2 Beijing Key Laboratory of Urban oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China 3 Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 成品油管道運(yùn)行工況變化頻繁,,難以精準(zhǔn)判斷管道運(yùn)行狀態(tài),依靠現(xiàn)場人員進(jìn)行識別監(jiān)控易造成誤判,。本文為實(shí)現(xiàn)管道運(yùn)行工況的準(zhǔn)確識別,,考慮管道的物理空間特性,分析整理各站運(yùn)行參數(shù)(壓力,、流量,、密度);考慮管道運(yùn)行的時(shí)間序列特性,,基于SCADA管道數(shù)據(jù)構(gòu)造運(yùn)行數(shù)據(jù)矩陣,,以克服單一時(shí)刻的瞬態(tài)擾動。針對管道運(yùn)行數(shù)據(jù)高維度,、非線性的特點(diǎn),,利用卷積自編碼器(CAE)強(qiáng)大的特征壓縮及重構(gòu)能力對管道數(shù)據(jù)做降噪處理;利用T分布鄰域嵌入算法(T-SNE)對管道數(shù)據(jù)做降維聚類處理,,最終建立了基于CAE-TSNE的管道運(yùn)行工況識別模型,。以某兩條成品油管道為例,,對比主流的非線性分類模型(ANN、DT,、RF),,結(jié)果表明基于CAE-TSNE的工況識別模型精度最高,對降噪后的運(yùn)行數(shù)據(jù)識別準(zhǔn)確率可達(dá)到99% 以上,,可用于指導(dǎo)現(xiàn)場管道的運(yùn)行管理,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 成品油管道,運(yùn)行工況識別,數(shù)據(jù)矩陣,卷積自編碼器,T分布鄰域嵌入
Abstract

The operation conditions of multi-product pipeline changes frequently and it is difficult to judge the operation state accurately. Therefore, the recognition and monitoring by on-site personnel is easy to cause misjudgment. In order to realize the accurate recognition of pipeline operation conditions, considering the physical spatial characteristics of the pipeline, the operation parameters (pressure, flow rate and density) of each station are sorted out. Considering the time series characteristics of pipeline operation, operating data matrix is formed to overcome the transient disturbance at a single moment based on the SCADA data. Aiming at the high-dimensional and non-linear characteristics of pipeline operating data, the powerful feature compression and reconstruction capabilities of the convolutional autoencoder (CAE) are used to reduce the noise of pipeline data. T-distributed stochastic neighbor embedding algorithm (T-SNE) is used to perform dimensionality reduction and clustering processing on pipeline data, and finally the model based on CAE-TSNE for pipeline operation condition recognition is established. Taking two real multi-product pipeline as example, the mainstream machine learning nonlinear classification models (ANN, DT and RF) were compared with the proposed method. The results show that the operating condition identification model based on CAETSNE has the highest accuracy, and the recognition rate of clustering identification of operating data after noise reduction can reach 99%, which can guide the operation and management of on-site pipelines.

Key words: multi-product pipeline; operating condition recognition; data matrix; CAE; T-SNE
收稿日期: 2024-02-29 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金面上項(xiàng)目“成品油供給鏈物流系統(tǒng)優(yōu)化及供給側(cè)可靠性研究”(No. 51874325) 資助
通訊作者: [email protected]
引用本文: ??
鄭堅(jiān)欽, 杜漸, 梁永圖, 趙偉, 王昌, 丁鵬, 吳全. 基于CAE-TSNE的成品油管道運(yùn)行工況識別. 石油科學(xué)通報(bào), 2024, 01: 148-157 ZHENG Jianqin, DU Jian, LIANG Yongtu, ZHAO Wei, WANG Chang, DING Peng, WU Quan. Research on pipeline operating condition recognition based on CAE-TSNE. Petroleum Science Bulletin, 2024, 01: 148-157.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社