精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁(yè)» 過(guò)刊瀏覽» 2024» Vol.9» lssue(1) 62-72???? DOI : 10.3969/j.issn.2096-1693.2024.01.005
最新目錄| | 過(guò)刊瀏覽| 高級(jí)檢索
基于聚類及長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)油田產(chǎn)量
王洪亮, 林霞, 蔣麗維, 劉宗尚
中國(guó)石油勘探開發(fā)研究院,北京 100083
An oilfield production prediction method based on clustering and long short-term memory neural network
WANG Hongliang, LIN Xia, JIANG Liwei, LIU Zongshang
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 利用機(jī)器學(xué)習(xí)方法預(yù)測(cè)油田產(chǎn)量的精度與訓(xùn)練樣本的代表性及數(shù)量息息相關(guān)。通常,,采用油田生產(chǎn)數(shù)據(jù)或者油井生產(chǎn)數(shù)據(jù)構(gòu)建訓(xùn)練樣本。將油田作為訓(xùn)練樣本,,存在“小樣本”的問(wèn)題;將油井作為訓(xùn)練樣本,,由于老油田一般具有開發(fā)層系多,、生產(chǎn)歷史長(zhǎng)、油井投產(chǎn)批次多等特點(diǎn),,人工標(biāo)注能夠代表油田產(chǎn)量遞減規(guī)律的訓(xùn)練樣本難度大,,且耗時(shí)費(fèi)力。本文將油田和油井生產(chǎn)數(shù)據(jù)有機(jī)融合構(gòu)建訓(xùn)練樣本,,建立產(chǎn)量智能預(yù)測(cè)模型,,預(yù)測(cè)油田產(chǎn)量。首先,,采用無(wú)監(jiān)督學(xué)習(xí)的K均值聚類算法,,依據(jù)有效厚度、孔隙度,、滲透率,、飽和度等信息對(duì)油井進(jìn)行聚類分析,識(shí)別產(chǎn)量遞減類別,,并將每類油井轉(zhuǎn)換成一口典型油井作為該類油井的代表,;其次,將典型井作為預(yù)測(cè)對(duì)象,,通過(guò)從每類油井中按比例隨機(jī)抽取油井來(lái)增加訓(xùn)練樣本數(shù)量,,即將典型井和油井生產(chǎn)數(shù)據(jù)融合構(gòu)建訓(xùn)練樣本;最后,,基于長(zhǎng)短時(shí)記憶循環(huán)神經(jīng)網(wǎng)絡(luò)建立模型預(yù)測(cè)典型井產(chǎn)量,,進(jìn)而預(yù)測(cè)油田產(chǎn)量。研究結(jié)果表明:該方法既解決了油田數(shù)據(jù)作為訓(xùn)練樣本的“小樣本”問(wèn)題,又降低了油井?dāng)?shù)據(jù)作為訓(xùn)練樣本的標(biāo)注難度與工作量,,并且精度符合現(xiàn)場(chǎng)生產(chǎn)要求,,對(duì)油氣產(chǎn)量智能預(yù)測(cè)的工程化落地應(yīng)用具有一定指導(dǎo)意義。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 油井產(chǎn)量,K-Means 聚類,樣本標(biāo)注,神經(jīng)網(wǎng)絡(luò),人工智能
Abstract

The accuracy of predicting oilfield production via machine learning algorithms is closely related to the representativeness and quantity of training samples. Generally, oilfield production data or oil well production data are used to construct training samples. There is the "small sample" problem when the oilfield is used for the training samples. To use oil wells as training samples, it is difficult and time-consuming to manually mark training samples that can represent the oilfield production decline, because old oil fields generally have many development layers, long production history and many production batches of oil wells. The production data of oilfield and oil well production data are organically integrated to construct training samples, and the production intelligent prediction model is established to predict the production of the oilfield. Firstly, the K-means clustering algorithm of unsupervised learning is used to perform cluster analysis on oil wells based on effective thickness, porosity, permeability, saturation and other observed values, identify the production decline category, and convert each type of oil well into a typical oil well as a representative of this type of oil well. Secondly, typical wells are taken as prediction objects, and the number of training samples is increased by randomly extracting wells proportionally from each type of well, that is, the production data of typical wells and wells are fused to construct training samples. Finally, a model is built based on LSTM neural network to predict the production of typical wells, and then predict the oilfield production. The research results show that this method not only solves the "small sample" problem of oilfield data as training samples, but also reduces the difficulty and workload of labeling oil well data as training samples, and the accuracy meets the requirements of field production, which has certain guiding significance for the engineering application of intelligent prediction of oil and gas production.

Key words: oil well production; K-Means clustering; sample labeling; neural network; artificial intelligence
收稿日期: 2024-02-29 ????
PACS: ? ?
基金資助:國(guó)家重點(diǎn)研發(fā)計(jì)劃課題“戰(zhàn)略性資源開發(fā)區(qū)風(fēng)險(xiǎn)評(píng)估應(yīng)用示范”(2022YFF0801204) 和中國(guó)石油天然氣股份有限公司重大統(tǒng)建項(xiàng)目“中國(guó)石油認(rèn)知計(jì)算平臺(tái)”(2019-40210-000020-02) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
王洪亮, 林霞, 蔣麗維, 劉宗尚. 基于聚類及長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)油田產(chǎn)量. 石油科學(xué)通報(bào), 2024, 01: 62-72 WANG Hongliang, LIN Xia, JIANG Liwei, LIU Zongshang. An oilfield production prediction method based on clustering and long short-term memory neural network. Petroleum Science Bulletin, 2023, 05: 62-72.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社