精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2023» Vol.8» Issue(6) 832-844???? DOI : 10.3969/j.issn.2096-1693.2023.06.076
最新目錄| | 過刊瀏覽| 高級檢索
基于深度殘差網絡的接轉站工藝流程異常工況診斷
張蕊, 侯磊, 劉珈銓, 孫省身, 張坤, 杜鑫, 李興濤
1 中國石油大學( 北京) 機械與儲運工程學院,北京 102249 2 中國石油長慶油田分公司長慶工程設計有限公司,西安 710021 3 中國石油長慶油田分公司第十二采油廠,,合水 745000 4 中國石油國際勘探開發(fā)有限公司,北京 102249
Abnormal operation condition diagnosis of block station based on deep residual network
ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 Changqing Engineering Design Co., Ltd , PCOC, xi’an 710021,China 3 PetroChina ChangQing Oilfield Company No.12 Oil Production Plant, Heshui 745000, China 4 China National Oil and Gas Exploration and Development Co., Beijing 102249, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 油氣集輸站場是油氣田地面工程的核心部分,。接轉站作為集輸系統(tǒng)的重要節(jié)點,既有設備集中,、運行連續(xù)性強的生產特點,還容易出現(xiàn)來流比例劇烈波動和設備運行故障等工況異常,。接轉站運行工況的診斷對油氣生產系統(tǒng)至關重要,,對于簡單設備的異常數據,站場員工尚能進行初步診斷,,但對整個站場的大量SCADA實時監(jiān)測數據,,僅靠經驗和知識難以實現(xiàn)快速分析處理。與油田現(xiàn)有的閾值報警方法相比,,基于數據驅動的診斷方法更加準確智能,。在數據驅動的方法中,深度學習方法能夠自動提取數據非線性特征,,善于處理海量高維數據,。根據某油田接轉站數據采集與監(jiān)視控制系統(tǒng)(SCADA)數據的多元時間序列特性,提出一種基于深度殘差網絡(DRN)的診斷方法,,以接轉站SCADA系統(tǒng)監(jiān)測數據為模型輸入,,工況類別為模型輸出建立診斷模型,對接轉站異常工況進行分類識別?,F(xiàn)場數據的噪聲會降低模型對少數類樣本的識別能力,,通過小波分解對接轉站數據進行降噪處理,減弱設備采集干擾,增強模型診斷性能,;采用樸素重采樣進行數據擴容,,緩解現(xiàn)場數據樣本量不足,模型難以訓練問題,;利用正則化方法對大數值權重向量進行懲罰,,避免模型對個別變量的依賴。在此基礎上提出8 種不同DRN架構,,確定適用于接轉站的最優(yōu)診斷模型,,通過多元互信息值法量化各類樣本間的相關程度,,證明診斷結果的有效性。油田現(xiàn)場的實際數據驗證表明,,該方法能夠用于對接轉站工藝流程運行狀況進行快速準確的診斷,,診斷準確率達97.3%,顯著高于支持向量機(93%),、多層感知機(65%)等經典機器學習方法,。該診斷方法對其他油氣站場的故障診斷和異常識別具有指導意義。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 工況診斷,集輸工藝,接轉站,深度殘差網絡,小波降噪
Abstract

Oil and gas gathering station is the core part of oilfield ground engineering construction. As the important link of gathering and transportation system, the block station has the production characteristics of centralized equipment and successional production chain, and it is also prone to severe fluctuation of the inflow proportion and equipment operation faults. The diagnosis of the operation condition for block station is crucial to the oil and gas production system, for the abnormal data of simple equipment, the station staff can make a preliminary diagnosis, but for a large number of real-time SCADA monitoring data of the whole station, it is difficult to realize rapid analysis and processing only by experience and knowledge. Compared with the existing threshold alarm method in oil field, data-driven diagnostic approach is more accurate and intelligent. Among the data-driven methods, deep learning method which is good at processing massive high-dimensional data, can automatically extract the nonlinear features of data. Aimed at multiple time series characteristics of data (SCADA) in block station, a fault diagnosis method is proposed by use deep residual network (DRN). In order to identify and classify the abnormal working conditions of block station, a diagnostic model was established by taking 36 monitoring variables of the SCADA system in block station as model input and 5 working conditions as model out. The noise of field data will reduce the ability of the model to identify the working conditions with fewer samples, wavelet decomposition is used to de-noise the data of the block station to reduce the interference of equipment acquisition, enhance model diagnostic performance. Naive resampling is used to enlarge the data capacity to alleviate the difficulty in training the model caused by insufficient sample size of field data. The regularization method is used to punish the weight vector with large values to avoid the dependence of the model on individual variables. On this basis, eight different DRN architectures has proposed to select the optimal diagnostic model for the block station, and the correction between various samples is quantified according to the mutual information method, ensured the validity of the diagnosis results. Verification of real data in field shows that the method can be used quickly and accurately diagnose process status of block station. The average accuracy is 97.3%, which are significantly higher than other machine learning method like support vector machine (93%) and multilayer perceptron (65%). The method has guiding significance for fault diagnosis and anomaly identification of other oil and gas stations.

Key words: operation conditions diagnosis; gathering and transportation process; block station; deep residual network; Wavelet Denoising
收稿日期: 2023-12-29 ????
PACS: ? ?
基金資助:中國石油天然氣集團有限公司—中國石油大學( 北京) 戰(zhàn)略合作科技專項:“一帶一路”海外長輸管道完整性關鍵技術研究與應用
(ZLZX2020-05) 資助
通訊作者: [email protected]
引用本文: ??
張蕊, 侯磊, 劉珈銓, 孫省身, 張坤, 杜鑫, 李興濤. 基于深度殘差網絡的接轉站工藝流程異常工況診斷. 石油科學通報, 2023, 06: 832-844. ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao. Abnormal operation condition diagnosis of block station based on deep residual network . Petroleum Science Bulletin, 2023, 05: 832-844.
鏈接本文: ?
版權所有 2016 《石油科學通報》雜志社