精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2023» Vol.8» Issue(1) 102-111???? DOI : 10.3969/j.issn.2096-1693.2023.01.007
最新目錄| | 過刊瀏覽| 高級檢索
基于物理模型驅(qū)動的機器學習方法預測超臨界二氧化碳管道最大泄漏速率
王一新, 陸詩建, 李衛(wèi)東, 滕霖
1 福州大學石油化工學院,,福州 350108 2 中國礦業(yè)大學碳中和研究院,,徐州 221008 3 重慶大學產(chǎn)業(yè)技術研究院,,重慶 401329
A physical model driven machine learning for predicting maximum leakage rate in supercritical CO2 release
WANG Yixin, LU Shijian, LI Weidong, TENG Lin
1 College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China 2 Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China 3 Chongqing University Industrial Technology Research Institute, Chongqing 401329, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 碳捕集與封存 (CCS)項目中涉及的大規(guī)模 CO2 適合采用超臨界管道輸送,。然而超臨界 CO2 管道泄漏過程 伴隨著復雜相變,因此對其最大泄漏速率進行準確預測是目前的研究難點,。鑒于傳統(tǒng)物理模型方法存在建模復 雜,、假設過多、計算耗時等缺點,,研究提出通過機器學習方法預測超臨界CO2 管道最大泄漏速率,,分別采用粒 子群算法優(yōu)化的支持向量機 (PSO-SVM)和簡化處理的卷積神經(jīng)網(wǎng)絡 (CNN)對等熵阻塞泄漏模型所生成的泄漏特 征數(shù)據(jù)進行學習,并測試了機器學習模型的預測準確率和泛化能力,。研究結(jié)果表明:①物理模型,、 PSO-SVM、 CNN的預測結(jié)果與實驗數(shù)據(jù)的平均誤差為 28.82%,;②兩種機器學習模型預測精度相差不大,, CNN的訓練時間 遠短于 PSO-SVM,但 PSO-SVM的泛化能力強于 CNN,,因此,, SVM適用于小樣本數(shù)據(jù)精確預測,而CNN更適 用于對大數(shù)據(jù)的學習和預測,。本研究成果為超臨界 CO2 管道最大泄漏速率預測提供了一種高效的新方法,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 機器學習,;超臨界二氧化碳;管道,;泄漏,;卷積神經(jīng)網(wǎng)絡;支持向量機
Abstract

Supercritical CO2 pipelines are suitable to transport the large-scale CO2 involved in Carbon capture and storage projects. The leakage process of supercritical CO2 pipelines is accompanied by complex phase changes. Therefore, it is difficult to predict the maximum leakage rate accurately at present. In view of the shortcomings of traditional physical model methods such as complex modeling, too many assumptions and time-consuming calculations, a way of predicting the maximum leakage rate of supercritical CO2 pipelines by machine learning method was proposed. It used to simply convolutional neural networks (CNN) and support vector machine improved by particle swarm optimization (PSO-SVM) respectively to study the leakage feature data generated by the isentropic choked flow leakage model. The prediction accuracy and generalization ability of the trained machine learning model were tested. The results show that: First, the average error between experimental data and prediction results of physical model, PSO-SVM, CNN is 28.82%. Second, the prediction accuracy of the two machine learning models shows little difference, the training time of CNN is much shorter than that of PSO-SVM, but the generalization ability of PSOSVM is stronger than that of CNN. Therefore, SVM is suitable for accurate prediction of small sample data, while CNN is more suitable for learning and prediction of large sample data. This study provides a new efficient method for predicting the maximum leakage rate of supercritical CO2 pipelines.

Key words: machine learning; supercritical CO2; pipeline; leakage; convolutional neural networks; support vector machine
收稿日期: 2023-02-28 ????
PACS: ? ?
基金資助:重慶市自然科學基金(CYY202010102001) 和福州大學科研啟動基金(GXRC-20041) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
王一新, 陸詩建, 李衛(wèi)東, 滕霖. 基于物理模型驅(qū)動的機器學習方法預測超臨界二氧化碳管道最大泄漏速率. 石油科學通報, 2023, 01: 102-111 WANG Yixin, LU Shijian, LI Weidong, TENG Lin. A physical model driven machine learning for predicting maximum leakage rate in supercritical CO2 release. Petroleum Science Bulletin, 2023, 01: 102-111
鏈接本文: ?
版權(quán)所有 2016 《石油科學通報》雜志社