精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2021» Vol.6» Issue(2) 282-291???? DOI : 10.3969/j.issn.2096-1693.2021.02.022
最新目錄| | 過刊瀏覽| 高級檢索
基于機器視覺的注水泵智能監(jiān)控方法研究
劉珈銓,,侯磊,,畢新忠 ,,段闖,,任贐慈
1 中國石油大學(北京)機械與儲運工程學院,北京 102249 2 中國石油大學(北京)油氣管道輸送安全國家工程實驗室/石油工程教育部重點實驗室,,北京 102249 3 中國石化勝利油田有限公司樁西采油廠,東營 257237
Research into an intelligent monitoring method based on machine vision for a water injection pump
LIU Jiaquan1,2, HOU Lei1,2, BI Xinzhong3 , DUAN Chuang3 , REN Jinci
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China 3 Zhuangxi Oil Production Company of Sinopec Shengli Oilfield, Dongying 257237, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 隨著智慧油田建設的高速推進,,對油田設備的智能監(jiān)控技術提出了更高要求,。目前油田儲存有大量監(jiān)控 視頻,面向人臉識別,、泄漏檢測等領域的視頻已有研究,,但面向旋轉設備的視頻還未被充分挖掘。針對某油田 注水泵監(jiān)控視頻圖像噪點多及干擾目標多等問題,,本文提出基于Faster Region Convolution Neural Network(Faster R-CNN)的注水泵智能監(jiān)控方法,。利用特征提取網(wǎng)絡(FEN)對輸入圖像的柱塞區(qū)域進行特征提取,;利用區(qū)域推薦 網(wǎng)絡(RPN)基于已提取特征圖生成一系列候選區(qū)域,;利用目標檢測網(wǎng)絡(ODN)綜合FEN提取的特征圖及RPN產 生的候選區(qū)域進行柱塞區(qū)域識別和柱塞區(qū)域坐標確定,實現(xiàn)了變化背景中泵柱塞區(qū)域的自動檢測,。通過二值化 與高斯濾波對柱塞區(qū)域圖像進行預處理,,減少圖像噪點以使柱塞運動期間的幀間差值顯著增大。通過幀間差分 法判別各幀中柱塞區(qū)域的當前運動狀態(tài),,并基于多個幀間差值的運動狀態(tài)判定標準判別柱塞區(qū)域的整體運動狀 態(tài),,實現(xiàn)了泵柱塞運動狀態(tài)的智能監(jiān)控。與傳統(tǒng)的基于數(shù)據(jù)采集與監(jiān)控系統(tǒng)(SCADA)中數(shù)值參數(shù)的監(jiān)控方法相 比,,基于機器視覺的智能監(jiān)控方法更加準確直觀,。油田生產現(xiàn)場的真實視頻驗證表明,該方法能夠快速準確地 對注水泵柱塞的運動狀態(tài)進行檢測,,檢測總準確率達到 96.75%,,顯著高于傳統(tǒng)的幀間差分法及光流法,能夠為 油田設備智能化管理提供技術支撐,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 運動目標檢測,;深度學習,;注水泵;智能監(jiān)控
Abstract
With the development of intelligent oil fields, the technology for intelligent surveillance of equipment in oil fields    
is required to reach a higher level. At present, there is a large number of surveillance videos stored in the databases of oil fields.    
There has been research on video interpretation for face recognition, leak detection and other fields, but the video for rotating    
equipment has not been fully exploited. In order to solve the problem of serious noise and various kinds of interference targets    
in the surveillance video images of water injection pumps in oil fields, an intelligent machine vision method based on the Faster    
Region Convolution Neural Network (Faster R-CNN) algorithm is introduced. Through the Feature Extraction Network (FEN),    
the image features of the plunger region of the input image are effectively extracted. Through the Region Proposal Network    
(RPN), a series of candidate regions are generated based on the extracted feature maps. Through the Object Detection Network    
(ODN), the feature maps extracted by FEN and the candidate regions generated by RPN are integrated to identify the plunger    
region and determine the coordinates of the plunger region. Therefore, automatic detection of the precise position of the plunger    
region of the pump in the changing background is realized. By using a binarization algorithm and a Gaussian filtering algorithm,    
each image of the plunger region is preprocessed to reduce image noise, which can help the frame difference during plunger    
movement become significantly larger. The current motion state of the plunger region in each frame is determined by the    
inter-frame difference method, and the overall motion state of the plunger region is determined based on the determination of the    
standard motion state through the multiple frame differences, so as to realize the intelligent surveillance of the movement state of    
the pump plunger. Compared with the traditional surveillance method based on numerical parameters from Supervisory Control    
and Data Acquisition (SCADA), this method is more accurate and intuitive. Based on the machine vision method, the character  
istics of serious noise and various kinds of interfering targets in the video image of the water injection pump can be responded    
to effectively. The surveillance video in actual oil field production sites is utilized to verify the outstanding performance of this    
intelligent surveillance technology for water injection pump. The total accuracy reached 96.75   %   , which is significantly higher    
than the traditional inter-frame difference method and the optical flow method. The proposed method can provide technical    
support for the intelligent management of oil field equipment.  


Key words: moving object detection; deep learning; water injection pump; intelligent monitoring
收稿日期: 2021-06-30 ????
PACS: ? ?
基金資助:國家重點研發(fā)計劃項目“油氣長輸管道及儲運設施檢驗評價與安全保障技術”(2016YFC0802100) 資助
通訊作者: [email protected]
引用本文: ??
劉珈銓, 侯磊, 畢新忠, 段闖, 任贐慈. 基于機器視覺的注水泵智能監(jiān)控方法研究. 石油科學通報, 2021, 02: 282-291 LIU Jiaquan, HOU Lei, BI Xinzhong, DUAN Chuang, REN Jinci. Research into an intelligent monitoring method based on machine vision for a water injection pump. Petroleum Science Bulletin, 2021, 02: 282-291.
鏈接本文: ?
版權所有 2016 《石油科學通報》雜志社