精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2021» Vol.6» Issue(1) 127-137???? DOI : 10.3969/j.issn.2096-1693.2021.01.010
最新目錄| | 過刊瀏覽| 高級檢索
基于自取法和支持向量機原理的原油管道運行電耗中期預測方法研究
朱振宇,白小眾,徐磊,侯磊,劉金海 ,谷文淵,孫欣
1 中國石油大學(北京)機械與儲運工程學院,北京 102249 2 中國石油天然氣集團公司油氣儲運重點實驗室,北京 102249 3 國家管網(wǎng)集團北方管道有限責任公司錦州輸油氣分公司,錦州 121000
Medium term prediction of power consumption of a crude oil pipeline based on a bootstrap method and support vector machine theory
ZHU Zhenyu, BAI Xiaozhong , XU Lei, HOU Lei, LIU Jinhai, GU Wenyuan, SUN Xin
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 CNPC Key Laboratory of Oil & Gas Storage and Transportation, Beijing 102249, China 3 National Pipe Network Group Northern Pipeline Co., Ltd. Jinzhou Oil and Gas Transmission Branch, Jinzhou 121000, PR China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 電耗預測是原油管道運行能耗管理的重要依據(jù),有助于輸油企業(yè)制定批量調(diào)度與負荷分配等運行方案。 相較于工藝計算和統(tǒng)計分析等傳統(tǒng)預測方法,機器學習方法在處理高維、非線性的管道運行數(shù)據(jù)時具有更優(yōu)的 預測效果。但由于數(shù)據(jù)獲取成本很高、數(shù)據(jù)存在安全保密性等原因,往往將造成可獲取的管道數(shù)據(jù)集是小樣本, 以此建立的模型預測精度難以滿足實際生產(chǎn)需求。為提高模型在小樣本集情況下的預測能力,通過利用數(shù)據(jù)生 成理論提出一種自取法和支持向量機相結合的管道運行電耗預測模型。利用自取法對原始小樣本集數(shù)據(jù)進行擴 充,根據(jù)原始數(shù)據(jù)集的分布規(guī)律生成虛擬樣本,填充樣本信息間隔,避免出現(xiàn)過擬合問題;使用粒子群算法對 支持向量機的超參數(shù)進行優(yōu)化,提高模型的擬合能力。以國內(nèi)某保溫原油管道的兩站場為例進行建模預測分析, 預測結果表明,相較于只利用原始數(shù)據(jù)集,添加虛擬樣本后多數(shù)預測值更加貼近真實值,且當兩站場分別加入 50 組虛擬樣本后,其月度電耗預測結果的平均絕對誤差(MAE)分別降低了 32.38%和 29.74%,證明通過向原始 數(shù)據(jù)集中添加虛擬樣本以擴充數(shù)據(jù)集規(guī)模,能夠有效降低預測誤差,提高模型的擬合能力,這為管道數(shù)據(jù)獲取 成本過高、企業(yè)重視數(shù)據(jù)安全等原因造成的可用樣本不充足問題提供了一種新的解決思路。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 原油管道;電耗預測;自取法;支持向量機;小樣本;虛擬樣本
Abstract
In general, accurate power consumption prediction is a very important basis for the energy consumption management    of a crude oil pipeline operation This is extremely helpful for oil transportation enterprises to reasonably formulate batch    scheduling, load distribution and other operation schemes. In general, traditional prediction methods such as process calculation    and statistical analysis do not perform very well in processing high-dimensional and non-linear pipeline operation data. In    contrast, machine learning methods have better prediction effects under these complex conditions. However, due to the very high    cost of data acquisition and the existence of security and confidentiality of the pipeline data, the pipeline data set that can be    obtained is often a very small sample data set, so the prediction accuracy of the model established by this method cannot meet the    strict requirements of actual production. Therefore, in order to improve the prediction ability of the established prediction models    in the case of small sample sets, according to the data generation theory, a pipeline operation power consumption prediction    model combining a bootstrap method and a support vector machine is proposed. Firstly, the data of the original small sample    set is expanded by the bootstrap method, and virtual samples are generated according to the distribution law of the original    data set, and the sample information interval is filled to avoid the problem of over-fitting. Then particle swarm optimization is    used to optimize the hyperparameters of the support vector machine to improve the fitting ability of the model. In this paper, a    two-station model of an insulated crude oil pipeline in China is taken as an example. As expected, the prediction results show    that compared to using only the original data set, most of the predicted values after adding virtual samples are closer to the real    values, and when 50 groups of virtual samples were added to the two stations, the average absolute error (MAE) of its monthly    
power consumption forecast results were reduced by 32.4   %   and 29.7   %   , thus proving that by adding the virtual samples to the    original data set to expand the scale of data set, it can effectively reduce the prediction error and increase the ability of model    fitting. In summary, this method provides a new way to solve the complex problem of insufficient available samples caused by    the high cost of pipeline data acquisition and the importance enterprises attach to the data security.  


Key words: crude oil pipeline; energy consumption prediction; bootstrap; support vector machine; small sample; virtual sample
收稿日期: 2021-03-31 ????
PACS: ? ?
基金資助:
通訊作者: [email protected]
引用本文: ??
ZHU Zhenyu, BAI Xiaozhong, XU Lei, HOU Lei, LIU Jinhai, GU Wenyuan, SUN Xin. Medium term prediction of power consumption of a crude oil pipeline based on a bootstrap method and support vector machine theory. Petroleum Science Bulletin, 2021, 01: 127-137.
鏈接本文: ?
版權所有 2016 《石油科學通報》雜志社