精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2020» Vol.5» Issue(3) 316-326???? DOI : 10.3969/j.issn.2096-1693.2020.03.027
最新目錄| | 過刊瀏覽| 高級檢索
粒子群優(yōu)化的等效基質模量提取和橫波預測方法
王國權,,陳雙全,,王恩利,,閆國亮 ,,周春雷
1 中國石油大學(北京)油氣資源與探測國家重點實驗室,北京 102249 2 中國石油大學(北京)物探重點實驗室,,北京 102249 3 中石油勘探開發(fā)研究院西北分院,,蘭州 730020
Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization
WANG Guoquan, CHEN Shuangquan, WANG Enli , YAN Guoliang, ZHOU Chunlei
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Geophysical Exploration, China University of Petroleum-Beijing, Beijing 102249, China 3 Research Institute of Petroleum Exploration & Development-Northwest(NWGI), PetroChina, Lanzhou 730020, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 常規(guī)橫波預測方法從基礎的巖石物理模型出發(fā),根據部分彈性參數與巖石物理參數間的定量關系,,確定 橫波速度對應約束參數(如孔隙縱橫比)的解空間,,不斷搜索尋求最優(yōu)解從而確定地下每一深度點對應的橫波速 度。但這樣做會存在兩點不足:一是簡單的遍歷搜索制約了預測方法的計算效率,;二是對于缺乏礦物含量信息 的井資料而言,,巖石物理建模已經嚴重受限,最終預測結果的精度必然會有很大影響,。為了解決這類礦物含量 未知地區(qū)進行橫波預測所存在的計算精度和效率問題,,論文提出基于粒子群非線性優(yōu)化算法框架下的橫波預測 策略。首先需要解決礦物基質模量未知或不準確的問題,,即在引入干巖石泊松比σdry后根據巖石骨架模型預設 法,,確定其與基質模量K0 的范圍,之后利用流體因子定義適應度函數,,將礦物基質模量反演轉化為二維粒子群 尋優(yōu)問題,,將最終得到的基質模量作為輸入更新到粒子群優(yōu)化的橫波預測過程中。使用論文提出的橫波預測策 略,,可以很好地解決基質模量未知的難題,,更好地利用Xu-White、Xu-Payne等巖石物理模型進行儲層描述,。同 時,,論文針對傳統(tǒng)方法計算效率低的問題進行了優(yōu)化,,在基質模量反演和橫波預測中都采用了粒子群算法來反 演約束參數,。實際資料應用結果表明:基于粒子群優(yōu)化框架下的基質模量反演結果滿足Voigt-Reuss界限條件,, 驗證了算法的正確性及準確度。與傳統(tǒng)遍歷搜索的橫波預測對比結果表明,,在精度得到保證的情況下,,采用粒 子群優(yōu)化算法可以大大提升整個橫波預測的計算效率。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 橫波預測;粒子群算法,;基質模量,;碳酸鹽巖;孔隙結構
Abstract

Based on the basic petrophysical model and the quantitative relationship between some elastic parameters and petrophysical parameters, the conventional shear wave prediction method determines the solution space of shear wave velocity corresponding to the constraint parameters (such as pore aspect ratio). It constantly searches for the optimal solution to determine the corresponding shear wave velocity at each depth point underground. However, there are two obvious shortcomings: one is that a simple ergodic search restricts the computational efficiency of the shear wave prediction method, and the other is that  petrophysical modeling has been seriously limited for well data which lack mineral content information at the same time. The accuracy of the final prediction result is bound to have a great impact. Therefore, in order to solve the problems of computational  accuracy and efficiency in shear wave prediction in areas with unknown mineral content, a shear wave prediction strategy based on a particle swarm nonlinear optimization algorithm is proposed in this paper. Firstly the whole calculation process needs to solve the problem that the mineral matrix modulus is unknown or inaccurate, that is, after the introduction of the dry rock Poisson ratio σdry, the range of Poisson's ratio and matrix modulus K0 is determined according to the rock skeleton model, and then the fitness function is defined by using the difference between the two kinds of fluid factors, and the inversion problem of mineral matrix modulus is transformed into an optimization problem of a two-dimensional particle swarm. The final matrix modulus is  updated as an input to the shear wave prediction process of particle swarm optimization. Using the shear wave prediction strategy proposed in this paper, we can solve the problem of shear wave prediction when the matrix modulus is unknown, and make better use of Xu-White, Xu-Payne and other petrophysical models for reservoir description. At the same time, the paper optimizes the low computational efficiency of the traditional method, and uses the particle swarm optimization algorithm to invert the constraint parameters in the matrix modulus inversion and shear wave prediction. The application results of practical data show that the inversion results of the matrix modulus based on particle swarm optimization framework still meet the Voigt-Reuss boundary conditions, which verifies the correctness and accuracy of the algorithm. Compared with the traditional ergodic search  shear wave prediction, the results show that whenthe accuracy is guaranteed, the particle swarm optimization algorithm can    greatly improve the computational efficiency of the whole shear wave prediction.    


Key words: shear wave velocity prediction; particle swarm optimization; matrix modulus; carbonate; pore structure
收稿日期: 2020-09-28 ????
PACS: ? ?
基金資助:國家自然科學基金項目(41574108),、中國石油天然氣集團公司科技項目(2019A-3310) 聯合資助
通訊作者: [email protected]
引用本文: ??
WANG Guoquan, CHEN Shuangquan, WANG Enli, YAN Guoliang, ZHOU Chunlei. Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization. Petroleum Science Bulletin, 2020, 03: 316-326.
鏈接本文: ?
版權所有 2016 《石油科學通報》雜志社