精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁(yè)» 過(guò)刊瀏覽» 2020» Vol.5» Issue(1) 26-38???? DOI : 10.3969/j.issn.2096-1693.2020.01.003
最新目錄| | 過(guò)刊瀏覽| 高級(jí)檢索
利用卷積神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)致密儲(chǔ)層微觀孔隙結(jié)構(gòu)
廖廣志,李遠(yuǎn)征,,肖立志,秦志軍,胡向陽(yáng),,胡法龍
1 中國(guó)石油大學(xué)( 北京) 油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 102249 2 中國(guó)石油大學(xué)( 北京) 教育部非常規(guī)油氣國(guó)際合作聯(lián)合實(shí)驗(yàn)室,,北京 102249 3 中國(guó)石油大學(xué)( 北京) 地球探測(cè)與信息技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,,北京 102249 4 中國(guó)石油新疆油田勘探開(kāi)發(fā)研究院,克拉瑪依 834000 5 中海石油( 中國(guó)) 有限公司湛江分公司,,湛江 524057 6 中國(guó)石油勘探開(kāi)發(fā)研究院測(cè)井與遙感技術(shù)研究所,,北京 100083
Prediction of microscopic pore structure of tight reservoirs using convolutional neural network model
LIAO Guangzhi, LI Yuanzheng, XIAO Lizhi, QIN Zhijun, HU Xiangyang, HU Falong
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 International Joint Laboratory of Unconventional Oil and gas of Ministry of Education, China University of Petroleum-Beijing,Beijing 102249, China 3 Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China 4 Exploration and Development Research Institute of Xinjiang Oilfield Company, PetroChina, Karamay 834000, China 5 Research Institute of Zhanjiang Company, CNOOC Limited, Zhanjiang 524057, China 6 PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 準(zhǔn)確地獲取儲(chǔ)層微觀孔隙結(jié)構(gòu)信息對(duì)于復(fù)雜油氣藏勘探開(kāi)發(fā)非常重要,是儲(chǔ)層評(píng)價(jià)和產(chǎn)能預(yù)測(cè)的基礎(chǔ),。目前常用的孔隙結(jié)構(gòu)表征方法大多數(shù)是基于物理實(shí)驗(yàn)構(gòu)建的模型,,如壓汞、鑄體薄片,、氮?dú)馕?、核磁共振等。這些觀測(cè)手段的響應(yīng)機(jī)理存在較大差異,,在表征方法,、有效分辨率、響應(yīng)范圍等方面各不相同,,難以在井下測(cè)量并應(yīng)用,。深度學(xué)習(xí)算法在小樣本數(shù)據(jù)建模及預(yù)測(cè)方面具有較大應(yīng)用潛力。本文利用灰色關(guān)聯(lián)分析,、主成分分析,、因子分析和智能聚類(lèi)等數(shù)據(jù)挖掘算法對(duì)壓汞毛管壓力數(shù)據(jù)等進(jìn)行深度分析,將研究區(qū)塊的孔隙結(jié)構(gòu)類(lèi)型劃分為5種類(lèi)別,。然后,,將常規(guī)測(cè)井資料作為輸入層,實(shí)現(xiàn)了單層卷積神經(jīng)網(wǎng)絡(luò)和雙層卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)儲(chǔ)層微觀孔隙結(jié)構(gòu)的方法,,并將訓(xùn)練模型應(yīng)用于測(cè)試井,。研究結(jié)果表明,卷積神經(jīng)網(wǎng)絡(luò)可以用于預(yù)測(cè)儲(chǔ)層微觀孔隙結(jié)構(gòu),,雙層卷積神經(jīng)網(wǎng)絡(luò)優(yōu)于單層神經(jīng)網(wǎng)絡(luò)模型,。而且通過(guò)卷積運(yùn)算可以提取更深層次、更抽象的儲(chǔ)層特征,。將預(yù)測(cè)結(jié)果和測(cè)井解釋反映的孔滲特性進(jìn)行對(duì)比,,兩者一致性較高,。雙層卷積神經(jīng)網(wǎng)絡(luò)模型在測(cè)試集上能達(dá)到80%以上的預(yù)測(cè)精度。研究方法為利用巖心分析數(shù)據(jù)和測(cè)井資料進(jìn)行儲(chǔ)層孔隙結(jié)構(gòu)評(píng)價(jià)提供了一種新思路,,對(duì)于復(fù)雜油氣勘探開(kāi)發(fā)具有重要指導(dǎo)意義,。
服務(wù)
把本文推薦給朋友
加入我的書(shū)架
加入引用管理器
關(guān)鍵詞 : 孔隙結(jié)構(gòu);數(shù)據(jù)挖掘,;深度學(xué)習(xí),;卷積神經(jīng)網(wǎng)絡(luò)
Abstract

Obtaining accurate information about the microscopic pore structure is very important for the exploration and development of low-porosity and low-permeability oil and gas reservoirs. This information is the basis for productivity prediction and dynamic reservoir simulation. At present, the commonly used pore structure characterization methods are all models based on physical experiments, such as mercury intrusion, thin section, nitrogen adsorption, and nuclear magnetic resonance. These methods are quite different and differ in terms of characterization mechanism, effective resolution and response range, which making it difficult to apply in downhole. Deep learning algorithms have great potential for application in the modeling and prediction of small sample data. In this paper, data mining algorithms such as grey relation analysis, principal component analysis, factor analysis,and intelligent clustering are used to perform deep mining of mercury injection capillary pressure data. The pore structure types of the study block are divided into five categories. Then, using conventional logging data as the input layer, a single-layer convolutional neural network and a double-layer convolutional neural network were used to predict the reservoir's micropore structure, and the training model was applied to the test well. The results show that the convolutional neural network can be used to predict the micro-pore structure of the reservoir. The double-layer convolutional neural network is better than the single-layer neural network model. Furthermore, deeper and more abstract reservoir features can be extracted through convolution operations.The prediction results are compared with the pore permeability characteristics reflected in the log interpretation, and the two are in high agreement. The double-layer convolutional neural network model can achieve a prediction accuracy of more than 80% on the test set. The research method provides a new idea for reservoir pore structure evaluation using core analysis data and logging data, and has important guiding significance for complex oil and gas exploration and development.

Key words: pore structure; data mining; deep learning; convolutional neural network
收稿日期: 2020-03-28 ????
PACS: ? ?
基金資助:國(guó)家自然科學(xué)基金(41674137 及51974337),國(guó)家油氣重大專(zhuān)項(xiàng)(2017ZX05019-002-008),、中國(guó)科學(xué)院戰(zhàn)略先導(dǎo)課題(XDA14020405) 資助
通訊作者: [email protected]
引用本文: ??
廖廣志, 李遠(yuǎn)征, 肖立志, 秦志軍, 胡向陽(yáng), 胡法龍. 利用卷積神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)致密儲(chǔ)層微觀孔隙結(jié)構(gòu). 石油科學(xué)通報(bào), 2020, 01: 26-38
鏈接本文: ?
LIAO Guangzhi, LI Yuanzheng, XIAO Lizhi, QIN Zhijun, HU Xiangyang, HU Falong. Prediction of microscopic pore structure of tight reservoirs using convolutional neural network model. Petroleum Science Bulletin, 2020, 01: 26-38.
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社