精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2020» Vol.5» Issue(1) 114-121???? DOI : 10.3969/j.issn.2096-1693.2020.01.011
最新目錄| | 過刊瀏覽| 高級檢索
人工神經(jīng)網(wǎng)絡預測管道沖蝕速率研究進展
王雨墨,,李彥博,,李曉平,艾迪輝,,昝林峰,,王維嘉,,王孟欣,宮敬
1 中國石油大學( 北京) 油氣管道輸送安全國家工程實驗室/ 城市油氣輸配技術北京市重點實驗室,,北京 102249 2 中國石油工程建設有限公司西南分公司,,成都 610017
Recent progress on ANN-based pipeline erosion predictions
WANG Yumo, LI Yanbo, LI Xiaoping, AI Dihui, ZAN Linfeng, WANG Weijia, WANG Mengxin,GONG Jing
1 National Engineering Laboratory for Pipeline Safety, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249 , China 2 China Petroleum Engineering CO., LTD. Southwest Company, Chengdu, 610017, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 本文系統(tǒng)綜述了近年來采用人工智能方法對固體壁面受固體顆粒沖擊摩擦導致質量損失現(xiàn)象的研究成果,回顧了現(xiàn)有的理論與實驗研究結論,,分析了人工智能方法的優(yōu)勢及與傳統(tǒng)研究方法的互補性,。從數(shù)據(jù)來源的角度分類,討論了以實驗數(shù)據(jù)為基礎及以CFD模擬為基礎的人工神經(jīng)網(wǎng)絡方法預測結果,。同時,,簡要介紹了最新的應用支持向量機、隨機森林等方法進行沖蝕研究的案例,。近年來的研究結果表明,,人工智能方法在管道沖蝕現(xiàn)象的研究中具有很高的應用潛力,將在未來管道完整性管理水平的提升及管道智能化建設的加速中發(fā)揮重要的作用,。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 管道沖蝕,;人工智能,;人工神經(jīng)網(wǎng)絡;管道完整性
Abstract

We systematically review the recent studies on wear and friction of pipeline walls caused by solid particle impact using AI related techniques. We examine the existing theoretical and experimental approaches, and analyze the advantages of Artificial Intelligence methods and their complementarity with classic research methods. According to the classification of data sources, the prediction results of Artificial Neural Networks (ANNs) based on experimental data or CFD simulation are discussed separately. The latest cases of erosion research using Support Vector Machine, Random Forest and other methods are also briefly introduced. Recent research conclusions show that AI method has high potential for application in the prevention of pipeline erosion, and will play an increasingly important role in the improvement of pipeline integrity management and the acceleration of
Intelligent Pipeline Construction in the future.

Key words: pipeline erosion; artificial intelligence; artificial neural network; pipeline integrity
收稿日期: 2020-03-28 ????
PACS: ? ?
基金資助:國家自然科學基金(51804319),、十三五國家科技重大專項專題(2016ZX05066005-001),、十三五國家科技重大專項課題(2016ZX05037005)、中國石油大學( 北京) 科研基金(2462018YJRC002) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
王雨墨, 李彥博, 李曉平, 艾迪輝, 昝林峰, 王維嘉, 王孟欣, 宮敬. 人工神經(jīng)網(wǎng)絡預測管道沖蝕速率研究進展. 石油科學通報, 2020, 01: 114-121
鏈接本文: ?
WANG Yumo, LI Yanbo, LI Xiaoping, AI Dihui, ZAN Linfeng, WANG Weijia, WANG Mengxin, GONG Jing. Recent progress on ANNbased pipeline erosion predictions. Petroleum Science Bulletin, 2020, 01: 114-121.
版權所有 2016 《石油科學通報》雜志社