精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2019» Vol.4» Issue(4) 354-363???? DOI : 10.3969/j.issn.2096-1693. 2019.04.032
最新目錄| | 過刊瀏覽| 高級檢索
基于機器學習的數(shù)字巖心孔滲預測方法研究
王依誠,,姜漢橋,,于馥瑋,成寶洋,,徐飛,,李俊鍵*
中國石油大學( 北京) 油氣探測與工程國家重點實驗室,,北京 102249
Researches on the pore permeability prediction method of 3D digital cores based on machine learning
WANG Yicheng, JIANG Hanqiao, YU Fuwei, CHENG Baoyang, XU Fei, LI Junjian
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導讀??
摘要? 巖石孔滲特征是影響儲層流體儲集及滲流能力的主要因素。目前數(shù)字巖心孔滲參數(shù)計算通常采用孔隙尺度建模并進行數(shù)值模擬,,具有建模復雜,、耗時長的缺點。為此,,本文根據天然巖心CT掃描結果,,運用OpenFOAM生成654 組訓練樣本,并通過機器學習算法建立數(shù)字巖心孔滲快速預測模型,,并對模型超參數(shù)進行敏感性分析,。當學習率為0.003時,模型具有較強的泛化能力,孔滲預測結果誤差小于10%的占比90%以上,,且能夠在1s內完成,。研究結果實現(xiàn)了數(shù)字巖心孔滲高效率、高精度預測,,能夠有效降低生產成本,,提高工作效率。
服務
把本文推薦給朋友
加入我的書架
加入引用管理器
關鍵詞 : 機器學習;數(shù)字巖心,;滲透率預測,;CT 掃描
Abstract

Rock porosity and permeability are the main factors affecting fluid storage and flow capacity in reservoirs. At present,pore scale modeling and numerical simulation are usually adopted in the estimation of properties of digital cores where modeling is complex and time-consuming. Therefore, based on the CT scanning results of natural cores, 654 sets of training samples were generated using OpenFOAM, and a fast prediction model was established by a machine learning algorithm. Sensitivity analysis was further conducted for model hyperparameters. When the learning rate is 0.003, the model displays strong generalization ability and prediction accuracy is above 90%. The time of prediction is reduced from more than one hour to less than one second.We propose a high efficiency and high-precision pore permeability prediction method of 3D digital cores based on machine learning, which can effectively reduce cost and improve work efficiency.

Key words: machine learning; digital cores; permeability prediction; CT scanning
收稿日期: 2019-12-30 ????
PACS: ? ?
基金資助:國家重大專項課題(2017ZX05009-005)、中國石油大學( 北京) 優(yōu)秀青年學者基金(2462019QNXZ04) 資助
通訊作者: [email protected]
引用本文: ??
王依誠, 姜漢橋, 于馥瑋, 成寶洋, 徐飛, 李俊鍵. 基于機器學習的數(shù)字巖心孔滲預測方法研究. 石油科學通報, 2019, 04: 354-363
鏈接本文: ?
WANG Yicheng, JIANG Hanqiao, YU Fuwei, CHENG Baoyang, XU Fei, LI Junjian. Researches on the pore permeability prediction method of 3D digital cores based on machine learning. Petroleum Science Bulletin, 2019, 04: 354-363.
版權所有 2016 《石油科學通報》雜志社