精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2019» Vol.4» Issue(3) 300-309???? DOI : 10.3969/j.issn.2096-1693.2019.03.026
最新目錄| | 過刊瀏覽| 高級檢索
基于量綱分析的優(yōu)化神經(jīng)網(wǎng)絡(luò)模型預(yù)測GAGD非混相開 發(fā)油藏采收率
陳小龍1,2,,李宜強1,2*,管錯1,2,,陳誠1,2
1 中國石油大學(xué)( 北京) 油氣資源與探測國家重點實驗室,,北京 102249 2 中國石油大學(xué)( 北京) 石油工程學(xué)院,,北京 102249
An optimized neural network prediction model for gas assisted gravity drainage recovery based on dimensional analysis
CHEN Xiaolong1,2, LI Yiqiang1,2, GUAN Cuo1,2, CHEN Cheng1,2
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 Petroleum Engineering Institute, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 與傳統(tǒng)的注氣方式相比,,氣體輔助重力驅(qū)作為新興發(fā)展起來的提高采收率手段以其獨特的驅(qū)替優(yōu)勢越來越受到國內(nèi)各大油田的重視,。目前國內(nèi)外有關(guān)GAGD非混相開發(fā)油藏采收率的預(yù)測模型有很多,,但模型大多是簡單的非線性關(guān)系,普遍存在預(yù)測精度差的問題,。近年來機器學(xué)習(xí)作為一種新興手段已經(jīng)廣泛的用于石油工程行業(yè),,其中人工神經(jīng)網(wǎng)絡(luò)已成為處理復(fù)雜非線性回歸問題最具潛力的方法。本文基于量綱分析,,提出了一種可以有效預(yù)測GAGD非混相開發(fā)油藏采收率的人工神經(jīng)網(wǎng)絡(luò)模型,。針對其他文獻中鮮有考慮油藏傾角的問題,對量綱參數(shù)之一的邦德數(shù)利用油藏傾角進行了修正,。在此基礎(chǔ)上分別利用遺傳算法和粒子群算法對模型參數(shù)進行優(yōu)化,,得到預(yù)測精度最高的優(yōu)化模型。測試結(jié)果表明優(yōu)化后的預(yù)測模型對于數(shù)值模擬,、物理模擬以及實際油田的采收率預(yù)測精度均高于常規(guī)的非線性函數(shù)預(yù)測模型,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 注氣輔助重力驅(qū),;量綱分析;采收率,;神經(jīng)網(wǎng)絡(luò),;遺傳算法;粒子群算法
Abstract

Compared with the traditional gas injection method, gas-assisted gravity drainage is an emerging development of enhanced oil recovery. It has attracted more and more attention from domestic oilfields due to its unique displacement advantages. At present, there are many prediction models for the recovery of GAGD immiscible reservoirs at home and abroad,but most of the models are simple nonlinear relationships and their prediction accuracy is poor. In recent years, machine learning has been widely used in the petroleum engineering industry and artificial neural networks have become the most potential method for dealing with complex nonlinear regression problems. Based on dimensional analysis, this paper proposes an artificial neural network model that can effectively predict the recovery of GAGD immiscible development reservoirs. In view of the fact that the dip angle of the reservoir is rarely considered in other studies, the Bond number of one of the dimensional parameters is corrected by the reservoir inclination. On this basis, a genetic algorithm and a particle swarm optimization algorithm are used to optimize the model parameters, and an optimization model with the highest prediction accuracy is obtained. By comparing this with the prediction results of other nonlinear regression models proposed in the literature, it is found that the optimized neural network model has higher precision for numerical simulation, physical simulation and actual oilfield recovery.

Key words: gas assisted gravity drainage; dimensional analysis; recovery factor; neural network; genetic algorithm; particle swarm optimization
收稿日期: 2019-09-29 ????
PACS: ? ?
基金資助:
通訊作者: [email protected]
引用本文: ??
陳小龍, 李宜強, 管錯, 陳誠. 基于量綱分析的優(yōu)化神經(jīng)網(wǎng)絡(luò)模型預(yù)測GAGD非混相開發(fā)油藏采收率. 石油科學(xué)通報, 2019, 03: 288-299
鏈接本文: ?
CHEN Xiaolong, LI Yiqiang, GUAN Cuo, CHEN Cheng. An optimized neural network prediction model for gas assisted gravity drainage recovery based on dimensional analysis. Petroleum Science Bulletin, 2019, 03: 288-299.
版權(quán)所有 2016 《石油科學(xué)通報》雜志社