精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2019» Vol.4» Issue(3) 310-322???? DOI : 10.3969/j.issn.2096-1693.2019.03.028
最新目錄| | 過刊瀏覽| 高級檢索
基于多種智能算法的腐蝕天然氣管道可靠性評價(jià)方法
何蕾,,溫凱,,吳長春,宮敬*
中國石油大學(xué)( 北京) 機(jī)械與儲運(yùn)工程學(xué)院,北京 102249
A corroded natural gas pipeline reliability evaluation method based on multiple intelligent algorithms
HE Lei, WEN Kai, WU Changchun, GONG Jing
College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 天然氣管道地理環(huán)境復(fù)雜,、運(yùn)行工況多變,以蒙特卡羅模擬為代表的不確定性仿真是目前腐蝕管道可靠性評價(jià)的主要方法,。然而天然氣管道高設(shè)計(jì)可靠度特性所帶來的高次模擬問題,,使蒙特卡羅模擬十分耗時(shí)。為解決這一問題,,本文采用神經(jīng)網(wǎng)絡(luò)算法取代蒙特卡羅模擬的可靠性評價(jià)方法,,建立管道基本參數(shù)與可靠度的非線性模型。針對目前神經(jīng)網(wǎng)絡(luò)算法應(yīng)用過程中存在的先驗(yàn)信息與神經(jīng)網(wǎng)絡(luò)模型的融合問題,,本文創(chuàng)新性地提出智能優(yōu)化算法與神經(jīng)網(wǎng)絡(luò)算法相結(jié)合的方法,。該方法能夠?qū)⒏g管道可靠度變化規(guī)律融入到建模過程中。建立了從特征變量的選擇,、樣本數(shù)據(jù)的生成與處理,、神經(jīng)網(wǎng)絡(luò)模型構(gòu)建及模型預(yù)測效果評價(jià)一體化計(jì)算流程。在多種工況下采用神經(jīng)網(wǎng)絡(luò)模型對管道結(jié)構(gòu)可靠度進(jìn)行預(yù)測,,結(jié)果表明該模型能夠在極短的時(shí)間內(nèi)獲得與蒙特卡羅模擬高度近似的評價(jià)結(jié)果,。相比于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型,該方法建立的模型在可靠度預(yù)測準(zhǔn)確性及可靠度變化規(guī)律的反映能力方面均有大幅度提高。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 腐蝕天然氣管道;可靠性,;人工神經(jīng)網(wǎng)絡(luò)建模方法改進(jìn),;模擬退火算法;拉丁超立方抽樣,;遺傳算法
Abstract

Natural gas pipelines have complex geographical environments and varied operating conditions. Uncertainty simulation represented by Monte Carlo methods has become the main method for pipeline corrosion reliability assessment. However,the high-order simulation problems caused by the high design reliability of natural gas pipelines make Monte Carlo simulations very time-consuming. In order to solve this problem, this paper uses a neural network algorithm rather than Monte Carlo simulation to establish a nonlinear model of basic pipeline parameters and reliability. Because of the difficulty of combining prior information in the modeling process, this paper proposes an innovative method that combines an intelligent optimization algorithm and a neural network algorithm. This method can incorporate the pipe corrosion reliability variation into the modeling process. An integrated computational flow from the selection of feature variables, the generation and processing of sample data,the construction of neural network models and the evaluation of model prediction effects are proposed. Under various working conditions, the neural network model constructed by the method proposed in this paper predicts the reliability of pipeline structures. The results show that the model can obtain the calculation results highly similar to Monte Carlo simulation in a very short time. Compared with the traditional neural network model, the model established by this method has greatly improved the reliability of prediction and the ability to reflect changes in reliability.

Key words: corroded gas pipelines; reliability; artificial neural network modeling method improvement; simulated annealing algorithm; Latin hypercube sampling; genetic algorithm
收稿日期: 2019-09-29 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金青年基金資助項(xiàng)目“基于狀態(tài)空間模型的天然氣管網(wǎng)瞬態(tài)優(yōu)化控制研究”(51504271) 資助
通訊作者: [email protected]
引用本文: ??
何蕾, 溫凱, 吳長春, 宮敬. 基于多種智能算法的腐蝕天然氣管道可靠性評價(jià)方法. 石油科學(xué)通報(bào), 2019, 03: 310-322
鏈接本文: ?
HE Lei, WEN Kai, WU Changchun, GONG Jing. A corroded natural gas pipeline reliability evaluation method based on multiple intelligent algorithms. Petroleum Science Bulletin, 2019, 03: 310-322.
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社