精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2019» Vol.4» Issue(1) 1-10???? DOI : 10.3969/j.issn.2096-1693.2019.01.001
最新目錄| | 過刊瀏覽| 高級(jí)檢索
基于卷積神經(jīng)網(wǎng)絡(luò)算法的自動(dòng)地層對(duì)比實(shí)驗(yàn)
徐朝暉1*,,劉鈺銘1,,周新茂2,何輝2,,張波3,,吳昊3,,高建2
1 中國石油大學(xué)( 北京) 地球科學(xué)學(xué)院 北京 102249 2 中國石油勘探開發(fā)研究院 北京 100083 3 阿拉巴馬大學(xué)地球科學(xué)系 塔斯卡盧薩 美國 35487
An experiment in automatic stratigraphic correlation using convolutional neural networks
XU Zhaohui1, LIU Yuming1, ZHOU Xinmao2, HE Hui2, ZHANG Bo3, WU Hao3, GAO Jian2
1 College of Geosciences, China University of Petroleum-Beijing, Beijing 102249 2 Research Institute of Petroleum Exploration and Development, CNPC, Beijing 10083 3 Department of Geoscience, University of Alabama, Tuscaloosa, USA 35487

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 深度學(xué)習(xí)善于從原始數(shù)據(jù)輸入中挖掘其內(nèi)在的抽象特征,十余年來,,其在語音識(shí)別,、語義分析、圖像分析等領(lǐng)域取得了巨大成功,,也大大推動(dòng)了人工智能的發(fā)展,。本文基于深度學(xué)習(xí)中廣泛應(yīng)用的卷積神經(jīng)網(wǎng)絡(luò)算法,以大慶油田某區(qū)塊密井網(wǎng)數(shù)據(jù)為對(duì)象,,開展自動(dòng)地層對(duì)比試驗(yàn),。實(shí)驗(yàn)中,隨機(jī)選取部分井作為訓(xùn)練樣本,,對(duì)另一部分井分層進(jìn)行預(yù)測(cè),,并與原始分層數(shù)據(jù)比對(duì)進(jìn)行誤差分析。按照訓(xùn)練樣本的井?dāng)?shù)據(jù)比例65%,、40%,、20%和10%,將實(shí)驗(yàn)分為4 組,,每組實(shí)驗(yàn)包括油層組,、砂層組和小層級(jí)3 個(gè)相互獨(dú)立的實(shí)驗(yàn)。12 個(gè)實(shí)驗(yàn)結(jié)果表明:訓(xùn)練量越大,,地層級(jí)別越高(厚度越厚),,自動(dòng)對(duì)比效果越好;20%的訓(xùn)練量就可以較可靠地進(jìn)行砂組及以上級(jí)別地層單元(厚度不小于10 m)的自動(dòng)對(duì)比,。該實(shí)驗(yàn)表明卷積神經(jīng)網(wǎng)絡(luò)算法能有效應(yīng)用于依據(jù)測(cè)井曲線進(jìn)行油藏規(guī)模地層自動(dòng)對(duì)比,,具有良好的發(fā)展前景。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 地層自動(dòng)對(duì)比;深度學(xué)習(xí),;卷積神經(jīng)網(wǎng)絡(luò),;訓(xùn)練與預(yù)測(cè)
Abstract

Deep learning is good at extracting the inherent abstract features from input data. It has achieved great success in speech recognition, semantic analysis, image analysis and other fields in the past ten years, which has greatly promoted the development of artificial intelligence. Based on the convolutional neural networks algorithm widely used in deep learning, this paper carries out well auto-correlation experiments which take a block of Daqing Oilfield as the object. In the experiments, some wells were randomly selected as training samples and the other wells were used as tested samples to predict the welltops. The predicted welltops were compared with the original welltops for error analysis. The experiments were divided into 4 groups according to the proportion of training well data, which was 65%, 40%, 20%, and 10% respectively. Each group of experiments consisted of three independent experiments, including oil layer group, sand group, and single layers. The 12 experiment results show that the more training data and the higher stratigraphic unit (or the larger thickness) can get, the better the well auto-correlation result,and the 20% training data can reliably perform the well auto-correlation of sand group and above stratigraphic units (thickness is no less than 10m). It also indicates that the convolutional neural networks algorithm can be effectively applied to reservoir-scale well auto-correlation based on well logs and has a promising future.

Key words: automatic stratigraphic correlation; deep learning; convolutional neural networks; training and testing
收稿日期: 2019-01-11 ????
PACS: ? ?
基金資助:國家科技重大專項(xiàng)課題(2017ZX05009-001,、2016ZX05014-002、2016ZX05010-001) 資助
通訊作者: * 通信作者, [email protected]
引用本文: ??
徐朝暉, 劉鈺銘, 周新茂, 何輝, 張波, 吳昊, 高建. 基于卷積神經(jīng)網(wǎng)絡(luò)算法的自動(dòng)地層對(duì)比實(shí)驗(yàn). 石油科學(xué)通報(bào), 2019, 01: 1-10
鏈接本文: ?
XU Zhaohui, LIU Yuming, ZHOU Xinmao, HE Hui, ZHANG Bo, WU Hao, GAO Jian. An experiment in automatic stratigraphic correlation using convolutional neural networks. Petroleum Science Bulletin, 2019, 01: 1-10.
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社