精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁» 過刊瀏覽» 2018» Vol. 3» Issue (2) -???? DOI : doi: 10.3969/j.issn.2096-1693.2018.02.016
最新目錄| | 過刊瀏覽| 高級檢索
基于貝葉斯概率矩陣分解的地震數(shù)據(jù)重建算法
侯思安,張峰,,李向陽
Seismic data reconstruction via a Bayesian probabilistic matrix factorization
HOU Sian, ZHANG Feng, LI Xiangyang

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 低秩矩陣分解是一種機(jī)器學(xué)習(xí)算法,,近年來該算法在地震數(shù)據(jù)重建問題中得到了廣泛的關(guān)注,,大量的學(xué)者針對模型構(gòu)建和最優(yōu)化求解等問題開展了研究,。但是精確的求解低秩矩陣分解問題還需要知道規(guī)則化參數(shù),,而規(guī)則化參數(shù)又與地震數(shù)據(jù)體的均值和方差等統(tǒng)計(jì)學(xué)參數(shù)直接相關(guān),,又因?yàn)閿?shù)據(jù)缺失和隨機(jī)噪音等因素,,這些參數(shù)是無法精確獲取的,。針對這一問題,,本文引入了貝葉斯概率矩陣分解算法,通過對均值和方差進(jìn)行隨機(jī)模擬,,并計(jì)算相應(yīng)的概率密度函數(shù),,從而實(shí)現(xiàn)自適應(yīng)的選取最優(yōu)數(shù)據(jù)重建結(jié)果。合成地震記錄和實(shí)際地震數(shù)據(jù)測試表明本文方法可以有效提高地震數(shù)據(jù)插值重建的精度和穩(wěn)定性,。
服務(wù)
把本文推薦給朋友
加入我的書架
加入引用管理器
關(guān)鍵詞 : 數(shù)據(jù)重建,;機(jī)器學(xué)習(xí),;低秩矩陣分解;貝葉斯原理,;馬爾科夫蒙托卡羅方法
Abstract

Low-rank matrix factorization is a kind of machine learning algorithm. In recent years, the algorithm has received
extensive attention in the problem of seismic data reconstruction. Much research related to model building and numerical
calculations has been published. However, the exact solution of low-rank matrix factorization requires the regularization parameters,
and the regularization parameters are directly related to the statistical parameters such as the mean and variance of the
decomposed seismic data. But these parameters cannot be obtained precisely because of missing data and random noise. In order
to solve this problem, this paper introduces the Bayesian probabilistic matrix factorization algorithm, which simulates the mean
and variance randomly and calculates the optimal reconstruction result by calculating the probability density function. Synthetic
seismic data and real seismic data tests indicate that the proposed method could improve the accuracy and stability of seismic
data reconstruction.

Key words: data reconstruction; machine learning; low-rank matrix factorization; Bayes’s theorem; Markov chain Monte Carlo
收稿日期: 2018-06-29 ????
PACS: ? ?
基金資助:國家自然科學(xué)基金項(xiàng)目(41474096) 和國家科技重大專項(xiàng)(2017ZX05018005) 聯(lián)合資助
通訊作者: [email protected]
引用本文: ??
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報》雜志社