精品素人自拍偷拍|91精品国产av国产|杨思敏伦理片|91制片厂杨柳信息|亚洲激情综合|蜜桃影像传媒ios下载|亚洲精品视频在线看|打屁股色网站|爱豆文化传媒影片|国产欧美精品一区二区色,明星换脸 av,国产日韩成人av,亚洲成a人影院

 
 
 
文章檢索
首頁(yè)» 過(guò)刊瀏覽» 2017» Vol. 2» Issue (3) 413-421???? DOI : 10.3969/j.issn. 2096-1693.2017.03.038
最新目錄| | 過(guò)刊瀏覽| 高級(jí)檢索
基于人工神經(jīng)網(wǎng)絡(luò)的天然氣井產(chǎn)量計(jì)算方法研究
宋尚飛1,,洪炳沅1,,史博會(huì)1,吳海浩1,康琦1,,王智2,,宮敬1*
1 中國(guó)石油大學(xué)(北京)油氣管道輸送安全國(guó)家工程實(shí)驗(yàn)室/石油工程教育部重點(diǎn)實(shí)驗(yàn)室/城市油氣輸配技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,,北京 102249 2 西安長(zhǎng)慶科技工程有限責(zé)任公司,,西安 710000
Research into calculation of natural gas well production based on an artificial neural network
SONG Shangfei1, HONG Bingyuan1, SHI Bohui1, WU Haihao1, KANG Qi1, WANG Zhi2, GONG Jing1
1 National Engineering Laboratory for Pipeline Safety/ MOE Key Laboratory of Petroleum Engineering /Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China 2 Xi'an Changqing Science and Technology Engineering Co Ltd, Xi'an 710000, China

全文: ? HTML (1 KB)?
文章導(dǎo)讀??
摘要? 隨著石油行業(yè)不斷向海洋發(fā)展,水下油氣生產(chǎn)工藝也隨之誕生,,傳統(tǒng)的技術(shù)手段面臨諸多新的問(wèn)題,。虛擬計(jì)量系統(tǒng)已經(jīng)逐步在國(guó)內(nèi)外的海上油氣田生產(chǎn)系統(tǒng)中開(kāi)始應(yīng)用。該技術(shù)利用油氣田的常規(guī)基礎(chǔ)工藝參數(shù)以及從生產(chǎn)控制系統(tǒng)獲取的實(shí)時(shí)儀表數(shù)據(jù),,通過(guò)多種模型實(shí)時(shí)計(jì)算出單井油氣水各相的流量,。本文主要研究人工神經(jīng)網(wǎng)絡(luò)在虛擬計(jì)量方面的應(yīng)用。由于目前常用的井筒模型不能適應(yīng)產(chǎn)量的瞬時(shí)變化,,不能及時(shí)準(zhǔn)確地預(yù)測(cè)產(chǎn)量,,本文引入具有高度非線性預(yù)測(cè)能力的誤差反向傳播的人工神經(jīng)網(wǎng)絡(luò)方法,以人工調(diào)試后的井筒模型結(jié)果作為數(shù)據(jù)樣本庫(kù),,模擬各種影響因素與天然氣井產(chǎn)量之間的映射關(guān)系,,通過(guò)學(xué)習(xí)和訓(xùn)練建立了基于BP神經(jīng)網(wǎng)絡(luò)模型的天然氣井產(chǎn)量計(jì)算模型。預(yù)測(cè)結(jié)果表明:該方法的計(jì)算結(jié)果與現(xiàn)場(chǎng)物理流量計(jì)測(cè)量值的相對(duì)誤差平均值為3.33%,,超過(guò)80%的數(shù)據(jù)點(diǎn)相對(duì)誤差處于±5%內(nèi),,預(yù)測(cè)精度較高。綜合分析表明,,人工神經(jīng)網(wǎng)絡(luò)模型能夠滿足實(shí)際生產(chǎn)需要,,且該模型結(jié)構(gòu)簡(jiǎn)單,不拘泥于具體的形式,,計(jì)算量少,。
服務(wù)
把本文推薦給朋友
加入我的書(shū)架
加入引用管理器
關(guān)鍵詞 : 水下油氣生產(chǎn)工藝, 虛擬計(jì)量系統(tǒng), 人工神經(jīng)網(wǎng)絡(luò)模型, 天然氣&mdash, 凝析液管道, 深海流動(dòng)安全保障
Abstract

  With the development of the oil industry to the deep water, underwater oil and gas production process have emerged and the traditional technology is facing many new problems. An alternative method for production estimation is represented by a Virtual Metering System (VMS) based on the analysis of the standard process parameters, available in almost all production system. The software is based on a methodology in which several models are included. This article mainly studies the application of an artificial neural network in gas well measurement. Because the existing wellbore models cannot adjust to changes of production in a timely manner nor predict accurately, this article introduced an error back propagation artificial neural network with highly nonlinear predictive ability. Artificially debugged wellbore model results served as a data sample library to simulate the mapping relationship between all kinds of influence factors and the gas well production.  A gas well flow calculation model based on a back propagation neural network is set up by learning and training. Predicted results show that compared with a physical flow meter, the average relative error of the calculation results is 3.33%. More than 80% of the data points have a relative error within plus or minus 5%, which indicates a high prediction accuracy. Comprehensive analysis shows that the artificial neural network model can meet the demands of practical production with the advantages of a simple model structure, flexible form and less calculation. Application of the artificial neural network model provides a new tool and method for virtual measurement technology.

Key words: subsea production system VMS Artificial Neural Network gas-condensate pipeline deepsea flow assurance
收稿日期: 2017-05-24 ????
PACS: ? ?
基金資助:國(guó)家科技重大專(zhuān)項(xiàng)(2016ZX05028-004-001),、國(guó)家自然科學(xué)基金(51534007),、國(guó)家科技重大專(zhuān)項(xiàng)(2016ZX05066005-001)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFS0303704,、2016YFS0303708)和中國(guó)石油大學(xué)( 北京) 科研基金(C201602) 聯(lián)合資助
通訊作者: 史博會(huì), [email protected]; [email protected]
引用本文: ??
宋尚飛,,洪炳沅,史博會(huì),,吳海浩,,康琦,王智,,宮敬. 基于人工神經(jīng)網(wǎng)絡(luò)的天然氣井產(chǎn)量計(jì)算方法研究[J]. 石油科學(xué)通報(bào), 2017, 2(3): 413-421. SONG Shangfei, HONG Bingyuan, SHI Bohui, WU Haihao, KANG Qi, WANG Zhi, GONG Jing. Research into calculation of natural gas well production based on an artificial neural network. Petroleum Science Bulletin, 2017, 2(3): 413-421.
鏈接本文: ?
版權(quán)所有 2016 《石油科學(xué)通報(bào)》雜志社