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a b s t r a c t

Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave
propagation characteristic during wavefield simulation, inversion and imaging. Transversely isotropy (TI)
and orthorhombic anisotropy (OA) are two typical categories of anisotropic media in exploration
geophysics. In comparison of the elastic wave equations in both TI and OA media, pseudo-acoustic wave
equations (PWEs) based on the acoustic assumption can markedly reduce computational cost and
complexity. However, the presently available PWEs may experience SV-wave contamination and insta-
bility when anisotropic parameters cannot satisfy the approximated condition. Exploiting pure-mode
wave equations can effectively resolve the above-mentioned issues and generate pure P-wave events
without any artifacts. To further improve the computational accuracy and efficiency, we develop two
novel pure qP-wave equations (PPEs) and illustrate the corresponding numerical solutions in the time-
space domain for 3D tilted TI (TTI) and tilted OA (TOA) media. First, the rational polynomials are adopted
to estimate the exact pure qP-wave dispersion relations, which contain complicated pseudo-differential
operators with irrational forms. The polynomial coefficients are produced by applying a linear optimi-
zation algorithm to minimize the objective function difference between the expansion formula and the
exact one. Then, the developed optimized PPEs are efficiently implemented using the finite-difference
(FD) method in the time-space domain by introducing a scalar operator, which can help avoid the
problem of spectral-based algorithms and other calculation burdens. Structures of the new equations are
concise and corresponding implementation processes are straightforward. Phase velocity analyses
indicate that our proposed optimized equations can lead to reliable approximation results. 3D synthetic
examples demonstrate that our proposed FD-based PPEs can produce accurate and stable P-wave re-
sponses, and effectively describe the wavefield features in complicated TTI and TOA media.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In exploration geophysics, abundant field data observations and
laboratorymeasurements have validated that the seismic anisotropy
widely exists in the subsurface medium (Thomsen, 1986; Tsvankin,
1997; Alkhalifah, 2000, 2003; Wang, 2002; Tsvankin and Grechka,
2011). Velocity anisotropy is a critical factor that affects the kine-
matics and dynamics behaviors of the seismic wave. Applying con-
ventional isotropic wavefield extrapolation schemes to execute
anisotropic inversion and imaging, these inaccurate propagation
features may result in incorrectly timed and positioned wavefields,
and further lead tomisplaced profiles and low-resolution imaging of
complex geological targets (Du et al., 2007; Fletcher et al., 2009;
. Huang).

y Elsevier B.V. on behalf of KeAi Co
Fowler et al., 2010; Duveneck and Bakker, 2011; Zhang and Zhang,
2011; Zhang et al., 2011; Kazei and Alkhalifah, 2018). Therefore,
developing seismic wave simulation, inversion and imaging based
on the anisotropic assumption has a significant meaning for the
development of high-accuracy geophysical techniques. Especially,
seismic wavefield numerical modeling, which is characterized by
adopting various numerical algorithms to solve different wave
equations, is an engine for subsequent inversion and imaging.

Extensive research has demonstrated that transversely isotropy
(TI) and orthorhombic anisotropy (OA) are two representative
anisotropic models in sedimentary rocks (Tsvankin and Grechka,
2011; Guitton and Alkhalifah, 2017; Masmoudi and Alkhalifah,
2018). Anisotropic wave propagation can be adequately described
by elastic wave equations with multiple independent parameters.
However, anisotropic elastic counterparts are seldom applied in
practice owing to their expensive computing cost and wavefield
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complexity. Therefore, exploiting wave equations only considering
P-wave events for anisotropic media becomes an important
research content. Up to now, plentiful anisotropic acoustic wave
equations have been presented, which can be broadly divided into
two categories: the coupled pseudo-acoustic wave equations
(PWEs) (Du et al., 2007; Fletcher et al., 2009; Fowler et al., 2010;
Duveneck and Bakker, 2011; Zhang and Zhang, 2011) and the
decoupled pure qP-wave equations (PPEs) (Liu et al., 2009; Chu
et al., 2011; Zhan et al., 2012; Xu and Zhou, 2014; Yan and Liu, 2016).

Starting from the dispersion relation of the anisotropic elastic
wave equation and setting the SV-wave velocity along the symmetry
axis to zero, Alkhalifah (2000, 2003) put forward coupled PWEs in
vertical TI (VTI) and vertical OA (VOA) media. These PWEs are
unphysical but they are convenient for seismic modeling, inversion
and imaging purposes. Following Alkhalifah's works, a series of
variations of PWEs have been developed (Du et al., 2007; Fletcher
et al., 2009; Fowler et al., 2010; Duveneck and Bakker, 2011; Zhang
and Zhang, 2011). However, these PWEs derived from the pseudo-
acoustic assumption may encounter inevitable SV-wave contami-
nation and propagation instability for undesirable anisotropic pa-
rameters (Fletcher et al., 2009). Accordingly, a lot of effort have been
devoted to modify the commonly used PWEs, such as, introducing
isotropic or elliptically anisotropic material surround the source
(Alkhalifah, 2000), smoothing parameter models (Zhang and Zhang,
2008), setting nonzero shear wave velocity (Fletcher et al., 2009),
and using filtering operations (Zhang et al., 2009). Unfortunately,
these strategies cannot remove SV-wave artifacts fundamentally and
stability disturbances for arbitrary anisotropic parameter conditions.

Alternatively, exploiting PPEs to generate anisotropic wavefields
can thoroughly resolve the above-mentioned issues. Liu et al.
(2009) derived isolated equations for P- and SV-waves through
factoring the original P-SV dispersion relation and exhibit that the
P-wave formula is completely free from SV-wave solution in VTI
media. Because the decoupled pure-mode wave equations contain
complex pseudo-differential operators, it is hard to solve them by
common numerical algorithms. Therefore, to date, a lot of efforts
were devoted to estimate complex pseudo-differential operators
for the purpose of high computational accuracy, efficiency and
flexibility (Liu et al., 2009; Chu et al., 2011; Zhan et al., 2012; Xu and
Zhou, 2014; Yan and Liu, 2016; Fomel et al., 2013; Song and
Alkhalifah, 2013; Zhang et al., 2019; Waheed et al., 2015; Li and
Zhu, 2018; Sun and Alkhalifah, 2021). Particularly, Chu et al.
(2011) applied a Taylor-series expansion (TE) method to approxi-
mate the complex pseudo-differential operator and calculate the
tilted TI (TTI) PPE using the finite-difference (FD)-based iterative
method. Zhan et al. (2012) computed a complex pseudo-differential
operator in the wavenumber domain individually by a pseudo-
spectral method and extend decoupled PPEs for modeling and
reverse time migration (RTM) in acoustic TTI media. Song and
Alkhalifah (2013) derived a pure qP-wave dispersion relation for
tilted OA (TOA) media and then apply the low-rank approximation
(LRA) method to compute it in the wavenumber domain. The LRA
method generally has high computational accuracy, but the effi-
ciency and flexibility are low due to the need for multiple Fourier
transforms (Wu and Alkhalifah, 2014). Afterwards, Xu and Zhou
(2014) developed a novel TTI PPE that can be conveniently solved
by separating the complex pseudo-differential operator into two
numerical operators: a differential equation and a scalar operator,
which can be solved by the FD method in the time-space domain.
The elliptical decomposition algorithm can produce exact phase
information for the P-wave component at a lower cost than tradi-
tional methods. However, this efficient method sacrifices modeling
accuracy for amplitude information. Thereafter, several modified
approaches have been developed to compensate the amplitude
error in acoustic TI and OA modeling (Waheed et al., 2015; Xu and
1535
Liu, 2018; Zhang et al., 2019). Recently, Li and Zhu (2018) adopted
rational polynomials to expand the accurate pure P-wave disper-
sion relations for TI and OA media, and then generate expansion
coefficients by using an optimization algorithm. The newly derived
PPEs can be easily solved by combining the fast Poisson solver and
the FD method, and produce acoustic wavefield with reliable
amplitude and phase information. The extensions of the optimi-
zation expansion strategy have been successfully used for seismic
modeling, inversion and imaging in TI and OA media (Zhang et al.,
2019; Mu et al., 2020; Xu et al., 2023; Ren et al., 2024a, 2024b). Up
to now, as for wavefield modeling in TI and OA media, many
scholars pay more attention to create modified pure P-wave
dispersion relations and PPEs with higher approximation accuracy
and advanced numerical solutions with higher computational ef-
ficiency (Li and Stovas, 2021; Xu et al., 2020; Xu and Stovas, 2021;
Liang et al., 2023; Bitencourt and Pestana, 2024; Mao et al., 2024).

In this paper, following previous works, we develop two PPEs
and illustrate specific numerical solutions for wave propagation in
complicated anisotropic media. First, a combination of a rational
polynomial approximation and numerical optimization is used to
estimate the exact pure P-wave dispersion relations, which involve
complex pseudo-differential operators, and further construct two
optimized PPEs for 3D TTI and TOA media. Then, the proposed
equations can be decomposed into a differential formula and a
scalar operator, and are efficiently calculated by using the unit
vector approach and FDmethods in the time-space domain. Finally,
theoretical derivations, phase velocity analyses and modeling ex-
amples validate the advantages of our proposed methods.
2. Pure qP-wave equation in the time-space domain for TTI
media

In this section, a recently proposed simplified PPE in 3D TTI
media is first reviewed (Bitencourt and Pestana, 2024). Then, an
optimized PPE with high approximation accuracy is developed
based on previous studies. Last, the corresponding FD-based nu-
merical solution with high computational efficiency in the time-
space domain is presented.
2.1. A simplified pure qP-wave equation for 3D TTI media

The exact dispersion relation of the pure qP-wave in 3D TTI
media can be expressed by

u2¼V2
pz

2

�
f
�bkx;bky;bkz�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
�bkx;bky;bkz��8ðε�dÞ

�bk2xþbk2y�bk2z
r �

(1)

where, u is the angular frequency, Vpz denotes the qP-wave velocity
along the symmetry axis, ε and d are the Thomsen's anisotropic

parameters (Thomsen, 1986). f ðbkx;bky;bkzÞ ¼ ð1 þ 2εÞðbk2x þ bk2yÞþ bk2z ,
where bkx, bky and bkz are spatial wavenumber components along the
symmetry axis evaluated in a rotated coordinate system. Specifically,8>><>>:
bkx ¼ kx cos q cos fþ ky cos q sin f� kz sin qbky ¼ �kx sin fþ ky cos fbkz ¼ kx sin q cos fþ ky sin q sin fþ kz cos q

(2)

where q denotes the dip angle of the symmetry axis measured from
the vertical axis, and f denotes the azimuth. kx, ky and kz are spatial
wavenumbers in the original coordinate system.

Eq. (1) can exactly depict qP-wave propagation characteristics in
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3D TTI media, but it includes a square root term. It is difficult to solve
such an equation numerically. To address this complex pseudo-
differential operator, several polynomial expansion strategies were
proposed to approximate the original dispersion relation, including,
TE method (Chu et al., 2011; Zhan et al., 2012), spectral-based
approximation (Yan and Liu, 2016; Fomel et al., 2013; Song and
Alkhalifah, 2013), numerical optimization (Wu and Alkhalifah,
2014; Li and Zhu, 2018; Zhang et al., 2019), and so on. Among
them, applying first-order TE to the square root term, Chu et al.
(2011) derived an approximated dispersion relation for TTI pure
qP-wave, which can greatly simplify calculation. Afterwards, Zhan
et al. (2012) extended the related algorithm to TTI media and pre-
sent a decoupled 3D PPE with a concise form. Based on Zhan et al.
(2012)'s work, Bitencourt and Pestana (2024) further derived a
simplified TTI PPE with higher computational efficiency as follows:

1
V2
pz

v2Pðk;tÞ
vt2

¼�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

~a11k
2
xþ~a22k

2
yþ~a33k

2
z þ~a12kxkyþ~a13kxkzþ~a23kykz

þ~a1111
k4x
k2

þ~a2222
k4y
k2

þ~a3333
k4z
k2

þ

k3x
k2
�
~a1112kyþ~a1113kz

�þk3y
k2

ð~a1222kxþ~a2223kzÞþ

k3z
k2
�
~a1333kxþ~a2333ky

�

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

Pðk;tÞ

(3)

in which, k2 ¼ k2x þ k2y þ k2z , the wavenumber vector k ¼ ðkx; ky; kzÞ
describes the phase direction of the wave propagation. Pðk; tÞ rep-
resents the pure qP-wave wavefield in the time-wavenumber
domain. For convenience, the derivation process of Eq. (3) and
polynomial coefficients ~a11, ~a22, ~a33, ~a12, ~a13, ~a23, ~a1111, ~a2222, ~a3333,
~a1112, ~a1113, ~a1222, ~a2223, ~a1333, ~a2333 all are described in Appendix A.

At present, Eq. (3) is an advanced simplified PPE in 3D TTI media
(Bitencourt and Pestana, 2024). Comparing Eq. (A1) and Eq. (3), the
wavefield simulated effects are consistent. However, it can be found
that the former occupies at least 16 (one forward and 15 inverse)
FFTs for fractional terms to be computed, whereas the latter just
needs 10 (one forward and 9 inverse) FFTs for one time loop.
Therefore, this advanced simplified PPE for 3D TTI media is faster
than the traditional one published in the geophysical literature
(Bitencourt and Pestana, 2024).

2.2. An optimized pure qP-wave equation and its numerical
implementation in the time-space domain for 3D TTI media
u2zV2
pz

0BBBBB@
b1k

2
x þ b2k

2
y þ b3k

2
z þ b4kxky þ b5kxkz þ b6kykz þ b7

k4x
k02

þ b8
k4y
k02

þ

b9
k4z
k02

þ b10
k3xky
k02

þ b11
k3xkz
k02

þ b12
k3ykx

k02
þ b13

k3ykz

k02
þ b14

k3z kx
k02

þ b15
k3z ky
k02

1CCCCCA (7)
As validated in the related literature (Zhan et al., 2012; Bitencourt
and Pestana, 2024), Eq. (A1) and Eq. (3) can accurately describe the
pure qP-wave event in 3D TTI media. However, both Eq. (A1) and Eq.
(3) are derived from the first-order TE strategy, which is a type of
1536
low-wavenumber/frequency estimation and can only keep high
approximation accuracy for relatively low wavenumber/frequency
ranges (Li and Zhu, 2018; Zhang et al., 2019; Mu et al., 2020; Xu et al.,
2023). To further improve the approximation accuracy, we develop
an optimized PPE and illustrate its numerical implementation
scheme in the time-space domain for 3D TTI media.

Similar to Eq. (3), we first apply an algebraic expression to
expand the original exact dispersion relation (Eq. (1)) in the
wavenumber domain as follows:

Gðb;kÞz b1k
2
x þ b2k

2
y þ b3k

2
z þ b4kxky þ b5kxkz þ b6kykz þ b7

k4x
k02

þ b8
k4y
k02

þ b9
k4z
k02

þ b10
k3xky
k02

þ b11
k3xkz
k02

þ b12
kxk3y
k02

þ b13
k3ykz

k02

þ b14
kxk3z
k02

þ b15
kyk3z
k02

(4)

where, k is a vector of kx, ky and kz, b is a vector of b1 � b15, and

k02 ¼ ð1 þ 2εÞðk2x þ k2yÞþ k2z . Compared to the original dispersion
relation (Eq. (1)), the polynomial coefficients b1 � b15 and
orthogonal spatial wavenumbers kx, ky, kz in the expansion formula
(Eq. (4)) are decoupled, thus the form is straightforward.

By minimizing the difference between Eq. (1) and Eq. (4) within
a limited wavenumber/frequency region, we are able to yield
globally optimal coefficients b1 � b15. On the basis of Eq. (1) and Eq.
(4), we construct an objective function as follows:

JðbÞ¼
ð ð ð

½AðbkÞ � Gðb;kÞ�2dkxdkydkz (5)

where, bk is a vector of bkx, bky, bkz, and
AðbkÞ¼�f �bkx;bky;bkz�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
�bkx;bky;bkz��8ðε�dÞ

�bk2xþbk2y�bk2z
r �	

2

(6)

Eq. (5) is a standard linear regression problem and can be expedi-
ently calculated by adopting some linear optimization algorithms.
The corresponding coefficients are functions of spatial locations
because they depend on the anisotropic parameters and angle
parameters. Once an anisotropic model is provided, one can solve
the above optimization system for each spatial node and generate
optimized coefficients b1 � b15.

By using the novel approximation formula (Eq. (4)), the pro-
posed optimized pure qP-wave dispersion relation for 3D TTI media
is written as
Previous experiences have shown that it is hard to solve PPEs
(Eqs. (A1), (3) and (7)) by using some common numerical algorithms
owing to the existence of the fractional terms (Chu et al., 2011; Zhan
et al., 2012; Yan and Liu, 2016; Li and Zhu, 2018). Thus, to improve
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the computational efficiency and flexibility on the premise of
ensuring accuracy, we next provide a practical implementation so-
lution for the proposed optimized PPE in the time-space domain.

By referring to the definition of the scalar operator S for acoustic
TTI wavefield simulation (Xu and Zhou, 2014; Liang et al., 2023), we
introduce a unified scalar operator Ska in the wavenumber domain as
follows:

Ska ¼
k2a

ð1þ 2εÞ
�
k2x þ k2y

�
þ k2z

;a2fx; y; zg (8)

Then, taking the scalar operator Ska into the proposed dispersion
relation (Eq. (7)), it can be arranged as

u2zV2
pz

0BBBBB@
�
b1þb7S

k
x

�
k2x þ

�
b2þb8S

k
y

�
k2y þ

�
b3þb9S

k
z

�
k2zþ�

b4þb10S
k
xþb12S

k
y

�
kxkyþ

�
b5þb11S

k
xþb14S

k
z

�
kxkz

þ
�
b6þb13S

k
yþb15S

k
z

�
kykz

1CCCCCA
(9)

Applying FFT to Eq. (9), we obtain an optimized PPE in themixed
space-wavenumber domain for 3D TTI media as follows:
v2Pðx;k; tÞ
vt2

¼V2
pz

0BBBBBBBBBB@

�
b1 þ b7S

k
x

�
Dxx þ

�
b2 þ b8S

k
y

�
Dyy þ

�
b3 þ b9S

k
z

�
Dzz

þ
�
b4 þ b10S

k
x þ b12S

k
y

�
DxDy

þ
�
b5 þ b11S

k
x þ b14S

k
z

�
DxDz

þ
�
b6 þ b13S

k
y þ b15S

k
z

�
DyDz

1CCCCCCCCCCA
Pðx;k; tÞ (10)
where Daa ¼ v2

va2 and Da ¼ v
va represent the second- and first-order

spatial partial differential operators, respectively.
Once we obtain the value of the scalar operator Ska in the above

equation, the optimized PPE can be conveniently solved by the
commonly used FD methods. Thus, we introduce an effective so-
lution to the scalar operator Ska.

Then, the unit vector of the phase direction n can be calculated
by (Xu and Zhou, 2014; Liang et al., 2023)

n¼ �nx;ny;nz�¼�kxk ; kyk ; kzk
�
¼ k
jkj (11)

Substituting the propagation direction n into Eq. (8), the oper-
ator Ska can be represented by the operator Sna as follows:
v2Pðx; tÞ
vt2

¼V2
pz

0BBBBB@
�
b1 þ b7S

n
x
�
Dxx þ

�
b2 þ b8S

n
y

�
Dyy þ

�
b3 þ b9S

n
z
�
Dzzþ�

b4 þ b10S
n
x þ b12S

n
y

�
DxDy þ

�
b5 þ b11S

n
x þ b14S

n
z
�
Dx

þ
�
b6 þ b13S

n
y þ b15S

n
z

�
DyDz
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Sna ¼
n2a

ð1þ 2εÞ
�
n2x þ n2y

�
þ n2z

(12)

Xu and Zhou (2014) developed the asymptotic form for Eq. (11)
in the space domain and the phase direction vector n can be spe-
cifically computed by using the local phase direction (Xu and Zhou,
2014; Liang et al., 2023):

na ¼ DaPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxPÞ2 þ

�
DyP

�2 þ ðDzPÞ2
q a2fx; y; zg (13)

Based on the above equation, the operators Sna are rewritten in
the following forms:
Snx ¼ 1

ð1þ 2εÞ
 
1þ

�
DyP
DxP

�2
!

þ
�
DzP
DxP

�2
;

Sny ¼ 1

ð1þ 2εÞ
 �

DxP
DyP

�2

þ 1

!
þ
�
DzP
DyP

�2
;

Snz ¼ 1

ð1þ 2εÞ
 �

DxP
DzP

�2

þ
�
DyP
DzP

�2
!

þ 1

:

(14)

Then, substituting Eq. (14) into Eq. (10) and replacing the operators
Ska with the operators Sna, the proposed PPE in the time-space
domain becomes
Dz

1CCCCCAPðx; tÞ (15)
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It is evident that the righthand side of Eq. (15) is all spatial
terms, and there are no extra terms of the wavenumber, thus it is
convenient to execute wavefield simulation.

In the time-space domain, we apply regular-grid FD method to
solve the proposed PPE (Eq. (15)) and carry out the wavefield
extrapolation in 3D TTI media. The 3D FD solvers in the time and
space domains are respectively defined as

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

v2P
vt2

¼ 1
Dt2

�
Pοþ1
i;j;l � 2Pοi;j;l þ Pο�1

i;j;l

�
;

DxxP ¼ v2P
vx2

¼ 1
Dx2

"
c
00
0P

ο
i;j;l þ

XM
m¼1

c
00
m

�
Pοiþm;j;l þ Pοi�m;j;l

�#
;

DyyP ¼ v2P
vy2

¼ 1
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"
c
00
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00
m

�
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00
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�#
;

DxP ¼ vP
vx

¼ 1
Dx
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c0m
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Pοiþm;j;l � Pοi�m;j;l

�
;

DyP ¼ vP
vy

¼ 1
Dy

XM
m¼1

c0m
�
Pοi;jþm;l � Pοi;j�m;l

�
;

DzP ¼ vP
vz

¼ 1
Dz

XM
m¼1

c0m
�
Pοi;j;lþm � Pοi;j;l�m

�
;

(16)

where Dt is the temporal sampling interval, Dx, Dy and Dz are
spatial grid spacings along different directions. M denotes a half of
the FD operator length, c0m and c

00
m are optimized high-order FD

coefficients for the first- and second-order spatial derivatives,
respectively (Liu, 2013).

Substituting the discretization terms of Eq. (16) into Eq. (15), we
obtain an effective FD-basedwavefield extrapolation scheme for 3D
TTI media as follows:
Pοþ1
i;j;l ¼ 2Pοi;j;l þ Pο�1

i;j;l þ

Dt2V2
pz
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where the operators Sdx , S
d
y and Sdz are difference discretization

forms of the operators Snx , S
n
y and Snz .

In conclusion, adopting an optimization algorithm to solve the
objective function (Eq. (5)), we compute polynomial coefficients
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b1 � b15. Then, the effective wavefield extrapolation in 3D TTI
media can be accomplished based on Eq. (17).

3. Extending the pure qP-wave equation to 3D TOA media

In the previous section, we develop an advanced PPE and
illustrate the corresponding FD-based numerical solution in the
time-space domain for 3D TTI media. Here, we extend the related
algorithms to the more complicated TOA media.

Through calculating the eigenvalues of PWEs in 3D TOA media,
we can derive an exact dispersion relation in the frequency-
wavenumber domain as follows (Xu and Zhou, 2014):
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pz
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q �
(18)
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where, ε1 and ε2 represent the VTI parameter ε in the yoz and xoz
planes, d1, d2 and d3 denote the VTI parameter d in the yoz, xoz and
xoy planes, respectively (Tsvankin, 1997). Eq. (18) is degenerated
into 3D TTI media by setting ε1 ¼ ε2 ¼ ε, d1 ¼ d2 ¼ d and d3 ¼ 0.

Previous works have shown that Eq. (18) can accurately describe
the pure qP-wave event in 3D TOA media (Xu and Zhou, 2014; Xu
and Liu, 2018; Zhang et al., 2019). Evidently, it is difficult to solve
the exact pure qP-wave dispersion relation by using common nu-
merical algorithms. Similar to 3D TTI media, we adopt the following
polynomial expression to expand the term
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ gÞ=23

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� gÞ=23

p
in Eq. (18):



Table 1
Polynomial coefficients of optimized pure qP-wave dispersion relations in homo-
geneous TTI and TOA media.

b Homogeneous TTI media d Homogeneous TOA media

Model I Model II Model I Model II

b1 1.379302eþ0 8.265387e�1 d1 1.352738eþ0 6.932912e�1
b2 1.379302eþ0 8.265387e�1 d2 1.352738eþ0 6.932912e�1
b3 1.294412eþ0 9.237412e�1 d3 6.219801e�1 2.010786eþ0
b4 �4.893111e�1 �5.186113e�1 d4 �4.926537e�1 �5.059455e�1
b5 2.384338e�1 3.902666e�2 d5 1.964725e�1 5.072065e�2
b6 2.384338e�1 3.902666e�2 d6 1.964725e�1 5.072065e�2
b7 �2.803182e�1 6.685650e�2 d7 �1.485011e�1 3.483390e�1
b8 �2.803182e�1 6.685650e�2 d8 �1.485011e�1 3.483390e�1
b9 �3.586984e�3 1.084212e�1 d9 3.786083e�1 �7.467122e�1
b10 �9.792786e�2 5.734586e�1 d10 �5.954408e�2 8.893035e�1
b11 �9.596415e�1 2.666647e�1 d11 �2.121752e�1 �4.697092e�1
b12 �9.792786e�2 5.734586e�1 d12 �5.954408e�2 8.893035e�1
b13 �9.596415e�1 2.666647e�1 d13 �2.121752e�1 �4.697092e�1
b14 �7.513516e�1 1.174174e�1 d14 �1.017209e�1 �3.778949e�1
b15 �7.513516e�1 1.174174e�1 d15 �1.017209e�1 �3.778949e�1
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where d is a vector of d1 � d15. Analogously, the coefficients
d1 � d15 can be generated by solving a linear objective system
based on the optimization strategy, as described in Eq. (5).

Substituting Eq. (20) into Eq. (18), the high-accuracy approxi-
mated dispersion relation for 3D TOA media is denoted by
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Based on the aforementioned scalar operators Ska ða2fx;y; zgÞ,
the proposed dispersion relation (Eq. (21)) is rearranged as
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Transforming it back to the time-space domain and combining
the scalar operators Sna ða2fx; y; zgÞ, we obtain a novel PPE for 3D
TOA media as
v2Pðx; tÞ
vt2
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Likewise, this equation can be easily computed by the commonly
used FD method. The corresponding high-accuracy wavefield
extrapolation scheme can be written as
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where the operators Sdx , S
d
y and Sdz are difference discretization

forms of the operators Snx , S
n
y and Snz .

Similarly, optimized coefficients d1 � d15 can be computed using
linear optimization strategy. Adopting Eq. (24) can provide pure qP-
wave propagation in 3D TOA media.
4. Phase velocity accuracy analysis

To verify the numerical accuracy of different pure qP-wave
dispersion relations, we compute phase velocities in two homo-
geneous TTI models with Eqs. (3) and (7), and compare them with
the accurate phase velocities, which are generated by Eq. (1).



Fig. 1. Phase velocity and absolute error analysis in a 3D homogeneous TTI mediumwith
ε ¼ 0:25, d ¼ � 0:05, q ¼ 60+ and f ¼ 45+ . (a) is the exact phase velocity surface of Eq.
(1), (b) is the absolute error surface of the simplified dispersion relation (Eq. (3)), and (c)
is the absolute error surface of the proposed optimized dispersion relation (Eq. (7)).

Fig. 2. Phase velocity and absolute error analysis in a 3D homogeneous TTI mediumwith
ε ¼ � 0:15, d ¼ 0:22, q ¼ 45+ and f ¼ 45+ . (a) is the exact phase velocity surface of Eq.
(1), (b) is the absolute error surface of the simplified dispersion relation (Eq. (3)), and (c)
is the absolute error surface of the proposed optimized dispersion relation (Eq. (7)).
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Fig. 3. Phase velocity and absolute error analysis in a 3D homogeneous TOA medium with ε1 ¼ 0:28, ε2 ¼ � 0:05, d1 ¼ d2 ¼ d3 ¼ 0:06 and q ¼ f ¼ 45+ . (a) Is the exact phase
velocity surface of Eq. (18), (b) is the absolute error surface of the proposed optimized dispersion relation (Eq. (21)).

Fig. 4. Phase velocity and absolute error analysis in a 3D homogeneous TOA mediumwith ε1 ¼ � 0:15, ε2 ¼ 0:20, d1 ¼ d2 ¼ d3 ¼ 0:08, q ¼ 60+ and f ¼ 45+ . (a) is the exact phase
velocity surface of Eq. (18), and (b) is the absolute error surface of the proposed optimized dispersion relation (Eq. (21)).
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Table 1 shows the corresponding optimized polynomial coefficients
in our proposed scheme. Figs. 1 and 2 depict several exact phase
velocity surfaces and absolute error surfaces for two TTI models.
The vertical P-wave propagation velocity is 2500 m/s. The related
anisotropic parameters and angle parameters are all described in
the figure caption. From these figures, we can conclude that, the
phase velocity errors of the present advanced pure qP-wave
dispersion relation (Eq. (3)) are relatively large because the calcu-
lated results are far from the zero-value plane. By contrast, our
proposed optimized equation (Eq. (7)) can uniformly distribute the
phase velocity errors, and generate high-accuracy simulated
results.

To further examine the numerical accuracy of our optimized
equation (Eq. (21)) in 3D TOA media, two TOA models are designed
to compute phase velocities and their absolute errors, which are
displayed in Figs. 3 and 4. The optimized polynomial coefficients
are provided in Table 1. The vertical P-wave velocity is 2500 m/s,
and other parameters are illustrated in the figure caption. From
these figures, we can see that the novel optimized equation can
produce acceptable numerical accuracy compared with the refer-
ence surface under different parameter conditions, even for strong
1541
anisotropic media. The phase velocity accuracy analyses demon-
strate that our developed optimized PPEs can produce reliable
approximation results for the following wavefield extrapolation in
3D TTI and TOA media.

5. Numerical examples

In this section, several synthetic simulation examples are
applied to validate the efficacy of the proposed PPEs. For compar-
ison, modeling results of PWEs (Du et al., 2007; Zhang and Zhang,
2011) are also presented. It should be noticed that both conven-
tional PWEs and the proposed PPEs are discretized by temporal
second-order and spatial high-order FD operators.

5.1. 3D homogeneous anisotropic media

In the first example, we examine our developed algorithm using
two homogeneous anisotropic models. The model size is 2000 m �
2000 m � 2000 m, and the cubic grid interval is 10 m. A Ricker
wavelet, with a peak frequency of 30 Hz, is located at the middle of
the model to produce the vibration. The vertical P-wave



Fig. 5. Wavefield snapshots in 3D TTI media of (a) the reference solution, (b) the conventional PWE and (c) the proposed PPE, respectively. The related parameters are ε ¼ 0:26, d ¼
0:08 and q ¼ f ¼ 45+ .
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propagation velocity is 2600 m/s, and other anisotropic parameters
and angle parameters are listed in the figure caption. In particular,
we also provide several reference solutions, which are produced by
adopting the pseudospectral method to compute the exact pure qP-
wave equations (Eqs. (1) and (18)) (Chu et al., 2011; Zhan et al.,
2012), are illustrated in Appendix B. Figs. 5 and 6 display several
time snapshots of wave propagation in 3D TTI and TOA media,
respectively. Comparing themodeling results of the exact solutions,
conventional equations and our proposed equations, we can
conclude that: (1) Inevitably, the wavefield slices generated by the
conventional PWEs contain strong SV-waves near the wave source,
1542
which affect the external P-wave characteristics. In particular, the
wavefield of PWE in TOA media becomes unstable owing to un-
desirable anisotropic parameters and angle parameters, thus we
don't show the calculated result. (2) By contrast, snapshots of our
FD-based optimized PPEs are completely free of SV-waves while
preserving P-wave events verywell. Besides, the proposed schemes
have favorable stability for different parameter combinations.

5.2. 3D complicated anisotropic media

Because there are no “known to us” available heterogeneous



Fig. 6. Wavefield snapshots in 3D TOA media of (a) the reference solution and (b) the proposed PPE, respectively. The related parameters are ε1 ¼ 0:20, ε2 ¼ 0:15, d1 ¼ d2 ¼ d3 ¼
0:06, q ¼ 45+ and f ¼ 45+ .

Fig. 7. The 3D modified BP 2007 TTI model. (a) Vpz, (b) ε, (c) d, (d) q.
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models for TOA media, we adopt part of the 3D modified BP 2007
TTI model to implement the anisotropic wavefield simulation,
which further reveals the accuracy and stability advantages of our
approaches. Fig. 7 shows the 3D modified BP 2007 TTI model,
1543
including propagation velocity Vpz, Thomsen's anisotropic param-
eters ε and d, and dip angle parameter q, which are all established
based on the standard 2D BP 2007 TTI model. The azimuth angle is
constant f ¼ 30+. The model size is (x, y, z) ¼ (3000 m, 2000 m,



Fig. 8. Wavefield snapshots in 3D modified BP 2007 TTI model computed by (a) the conventional PWE and (b) the proposed PPE.
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3000 m), and the cubic grid spacing is 10 m in all directions. We
choose a 35 Hz Ricker wavelet at (1500 m, 1000 m, 1200 m) to
generate the vibrations. Besides, the 3D hybrid absorbing boundary
condition with 10 grid points are adopted to suppress unwanted
artificial false reflections from truncatedmodel boundaries (Liu and
Sen, 2011). Fig. 8(a) depicts the time snapshot of wave propagation
calculated by the traditional PWE. We can observe strong SV-wave
and converted wave artifacts around the source, which may result
in numerical instability during the wavefield extrapolation. By
comparison, the time snapshot of our FD-based optimized PPE in
Fig. 8(b) can thoroughly remove the SV-wave contamination, and
thus produce highly accurate and stable pure P-wave events. In
conclusion, the simulated results in the 3D complicated anisotropic
media verify that our proposed scheme can effectively describe the
pure P-wave propagation characteristics.

6. Discussion

In this section, we mainly analyze the limitations and potential
solutions for our proposed scheme.

Compared with the presently available PPEs, the proposed
equations derived from the optimization strategy have higher
approximation accuracy because they distribute the numerical er-
rors evenly within the whole wavenumber/frequency ranges. In
additional, the FD-based numerical solutions have higher efficiency
and flexibility than the conventional spectral-based method or
hybrid pseudospectral methodþ FDmethod. The proposedmethod
may damage the amplitude or phase features slightly, but these
errors are completely acceptable for common anisotropy parame-
ters (Xu and Zhou, 2014; Liang et al., 2023; Bitencourt and Pestana,
2024). Moreover, better approximation results can be achieved by
further smoothing the model parameters, and we believe that the
application of higher-order or optimized FD operators would
resolve this issue. The computational accuracy may benefit from
establishing a relation n ¼ Ck=jkj between the unit vector of the
phase direction n and the wavenumber vector k, the operator C can
be determined by an optimization method.

As mentioned above, the optimized polynomial coefficients in
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our scheme depend on anisotropic parameters. For a complex
anisotropic model, the extra time needs to compute the co-
efficients. In practice, as described in the aforementioned “3D
complicated anisotropic media” section, the modified BP 2007 TTI
model shown in Fig. 7 is a pseudo 3D case. Therefore, we only need
to calculate polynomial coefficients in the xoz plane. Coefficients in
the 3D computational domain can be generated by extending the
xoz plane along the y direction. The extra computational time of
polynomial coefficients is acceptable compared with 3D wavefield
extrapolation. As a potential solution, these coefficients can be pre-
computed by dividing the model parameters into fixed intervals
(Zhang et al., 2019). Once we obtain the coefficients, we can store
them in a local file and utilize them repeatedly. Thus, the compu-
tational efficiency can be guaranteed to some extent. Inevitably, the
computational efficiency and storage are limitations of our present
work for a 3D large-scale anisotropic model, especially for 3D cases
in production. To reduce the computational cost, apart from the
above parameter gridding and coefficient reutilization, maybe we
can calculate partial coefficients and generate others by incorpo-
rating sparse representation and interpolation. More importantly,
greater efforts must be made to achieve a significant computational
accuracy, efficiency and storage for 3D production in our following
works.

7. Conclusions

We proposed two modified pure qP-wave equations (PPEs) and
illustrate their specific implementation scheme for seismic wave-
field simulation in 3D TTI and TOAmedia. A combination of rational
polynomial approximation and numerical optimization strategy is
adopted to evaluate the original anisotropic dispersion relation,
which includes complicated pseudo-differential operators, and
further build two optimized PPEs for 3D TTI and TOA media. By
introducing a scalar operator, the proposed equations are efficiently
solved by incorporating the unit vector method and FD approach in
the time-space domain. Theoretical derivations show that the
structures of new equations are concise and the implementation
processes are straightforward. Phase velocity analyses show that



S.-G. Xu, X.-G. Huang and L. Han Petroleum Science 22 (2025) 1534e1547
our proposed equations can produce reliable approximated results.
Numerical examples verify that the newly derived PPEs can
generate accurate P-wave events, completely free from SV-wave
artifacts and instabilities. Besides, the proposed FD-based wave-
field extrapolation strategy can omit the need for spectral-based
transformation and other extra computational burden of the
traditional solutions, thus the computational efficiency is signifi-
cantly improved. In general, the development of these PPEs can be
considered as an effective tool for anisotropic inversion and im-
aging in complex geologic structures.
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Appendix A. A simplified 3D TTI pure qP-wave equation

Starting from the exact TTI pure qP-wave dispersion relation
(Eq. (1)), Zhan et al. (2012) derived a decoupled 3D TTI PPE in the
time-wavenumber domain based on the first-order TE method as
follows:
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in which, the polynomial coefficients are consisted of anisotropic
parameters (ε, d) and angle parameters (q, f). They have the
following analytical forms (Zhan et al., 2012):
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Knowing that (Bitencourt and Pestana, 2024)
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Using the above relationship, Eq. (A1) can be further simplified
as (Bitencourt and Pestana, 2024)
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in which
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~a11 ¼ a11 þ a1133=2þ a1122=2� a2233=2
~a22 ¼ a22 � a1133=2þ a1122=2þ a2233=2
~a33 ¼ a33 þ a1133=2� a1122=2þ a2233=2
~a12 ¼ a12 þ a1233; ~a13 ¼ a13 þ a1223; ~a23 ¼ a23 þ a1123
~a1111 ¼ a1111 � a1133=2� a1122=2þ a2233=2
~a2222 ¼ a2222 þ a1133=2� a1122=2� a2233=2
~a3333 ¼ a3333 � a1133=2þ a1122=2� a2233=2
~a1112 ¼ a1112 � a1233; ~a1113 ¼ a1113 � a1223
~a1222 ¼ a1222 � a1233; ~a2223 ¼ a2223 � a1123
~a1333 ¼ a1333 � a1223; ~a2333 ¼ a2333 � a1123

(A5)

Appendix B. Reference solutions based on the pseudospectral
method for 3D TTI and TOA media

For exact pure qP-wave dispersion relation (Eq. (1)) in 3D TTI
media, we can adopt the pseudospectral method to solve it and
generate the reference solution. The corresponding time-
wavenumber domain TTI pure qP-wave equation therefore is

v2Pðk; tÞ
vt2

¼V2
pz

2

(
ð1þ 2εÞ

h
F�1ð�bkxPÞ þ F�1��bkyP�iþ

F�1ð�bkzPÞ þ F�1
� b
�bkx; bky; bkz�P�

)
(B1)

where, P is the spatial Fourier transform of P, F�1 denotes the in-

verse spatial Fourier transform, and bðbkx; bky; bkzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðbkx; bky; bkzÞ � 8ðε� dÞðbk2x þ bk2yÞbk2z

r
.

Similarly, we apply the pseudospectral method to calculate the
exact TOA dispersion relation (18) and produce the reference so-
lution as follows:

v2Pðk; tÞ
vt2

¼V2
pz

3

n
� F�1
� k

�bkx; bky; bkz�P�o (B2)

where kðbkx;bky;bkzÞ ¼ ð� a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ gÞ=23

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� gÞ=23

p
Þ

The derivations of Eqs. (B1) and (B2) are based on exact
dispersion relations, therefore they can be considered as reference
solutions for homogeneous anisotropic media (Chu et al., 2011;
Zhan et al., 2012). For heterogeneous media, directly adopting the
pseudospectral method to compute exact anisotropic dispersion
relations may lead to numerical error and instability, thus many
approximated schemes get further developments.
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