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a b s t r a c t

Machine learning algorithms are widely used to interpret well logging data. To enhance the algorithms’
robustness, shuffling the well logging data is an unavoidable feature engineering before training models.
However, latent information stored between different well logging types and depth is destroyed during
the shuffle. To investigate the influence of latent information, this study implements graph convolution
networks (GCNs), long-short temporal memory models, recurrent neural networks, temporal convolu-
tion networks, and two artificial neural networks to predict the microbial lithology in the fourth member
of the Dengying Formation, Moxi gas field, central Sichuan Basin. Results indicate that the GCN model
outperforms other models. The accuracy, F1-score, and area under curve of the GCN model are 0.90, 0.90,
and 0.95, respectively. Experimental results indicate that the time-series data facilitates lithology pre-
diction and helps determine lithological fluctuations in the vertical direction. All types of logs from the
spectral in the GCN model and also facilitates lithology identification. Only on condition combined with
latent information, the GCN model reaches excellent microbialite classification resolution at the centi-
meter scale. Ultimately, the two actual cases show tricks for using GCN models to predict potential
microbialite in other formations and areas, proving that the GCN model can be adopted in the industry.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the paleoceanic and paleoenvironmental evolution in the
Neoproterozoic-Paleozoic boundary, microbialite has been exten-
sively developed in the terminal Ediacaran (Sinian) Dengying For-
mation. Rather than simply reflecting paleo-information, previous
research indicates that microbialites are significant carbonate res-
ervoirs for petroleum systems (Al-Siyabi, 2005; Collins et al., 2014;
Grotzinger and Al-Rawahi, 2014; Jiang et al., 2018a, 2018b, 2019;
Mancini et al., 2004, 2008; Smodej et al., 2019; Zou et al., 2014).
Several factors contribute to the presence of excellent reservoirs in
the Dengying Formation, including paleoclimate, sea-level fluctu-
ations, geochemistry, and paleo-uplift (Yan et al., 2022). Among
these factors, the existence of microbial mound-shoal complexes
. Song).
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and their spatial distributions on the carbonate platform are
particularly important (Lan et al., 2022). The analysis of microbial
mound-shoal complexes heavily relies on petrological analysis of
microbialites in numerous individual wells. To determine their
distribution, well profiles based on petrological sequence estab-
lishment serve as crucial data for constraining the spatial distri-
butions of microbial mound-shoal complexes. The fundament of
well profiles is the petrological sequence in each single well. Precise
petrological analysis in wells plays a pivotal role in hydrocarbon
exploration for microbial mound-shoal complexes.

Core observation, thin-section analysis, and logging interpreta-
tion are common used methods in petrologic analysis. Core
observation analyses are limited due to the high cost associated
with borehole drilling. Lithological interpretation from conven-
tional logging data is widely used in the petroleum industry.
However, interpreting microbial carbonate lithology poses chal-
lenges. Cross-plotting analysis and imaging logs are frequently
employed for predictingmicrobialite lithography (Feng et al., 2021).
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Imaging logs are scarce and costly compared to the abundant and
inexpensive conventional logs. Simultaneously, the complexity of
logging curves limits the interpretation accuracy of the cross-
plotting analysis. Furthermore, cross-plotting analysis relies on
manual operations and is time-consuming. The economic and
technical limits the exploration of the deeply burial microbialite
reservoirs in the Dengying Formation. To reduce costs and improve
prediction accuracy, an automated technical flow for processing
conventional data logging is crucial for identifying microbialites in
the Dengying Formation. The rapid development of machine
learning algorithms in recent decades provides new perspectives
on constructing the technical flow.

A variety of machine learning algorithms have been widely
utilized in the field of oil and gas exploration, including the
XGBoost model, physics-informed neural networks (PINN), artifi-
cial neural networks and some statistical machine learning models
(Busch et al., 1987; Wang and Carr, 2012; Bhattacharya et al., 2016;
Ghosh et al., 2016; Xie et al., 2018; Barbosa et al., 2019; Bressan
et al., 2020; Chen et al., 2020; Liu et al., 2021; Tang et al., 2014;
Xu et al., 2021; Zhang et al., 2022). In the context of lithology/
lithofacies classification, machine learning techniques have proven
to be effective in interpreting logging data and achieving satisfac-
tory performance (Rogers et al., 1992; Bhatt and Helle, 2002;
Dubois et al., 2007; Hall, 2016). However, most previous studies
have overlooked the importance of preserving the temporal infor-
mation inherent in logging data during the process of supervised
learning. Recently the time-series information has got attention
and been demonstrated by a specific study (Hilborn, 2000; Zeeden
et al., 2023) that well logging data exhibit chaotic time-series
characteristics, and shuffling the data can lead to the loss of valu-
able temporal patterns.

The concept of time-series is widely used in cyclic stratigraphy.
Worthington (1990) conducted the initial research on time-series
data in well logging within the context of cyclic stratigraphy.
Worthington (1990) referred to the time-series information as
sediment cyclicity. Algeo (1993) quantified the relationship be-
tween stratigraphy and the terminology of time-series using
paleomagnetic data. Prokoph (1999) and Prokoph and Barthelmes
(1996) discussed the impact of stratigraphic parameters on
geological time-series data and highlighted the ability of sedi-
mentation successions to capture abrupt sedimentary changes.

After successfully being utilized in cyclic stratigraphy, time-
series data have generated the interest of scientists working with
well logging data. Verma et al. (2014) inputted logging data in a
time-series form and compared the similarity among well logs
using the synchronization likelihood method). Recently, with the
rapid development of sequential neural network models, including
the recurrent neural network model (RNN, Zaremba et al., 2014),
long-short temporal memory model (LSTM, Hochreiter and
Schmidhuber, 1997; Graves, 2012), gate recurrent unit model
(GRU, Cho et al., 2014), and temporal convolutional network (TCN,
Bai et al., 2018), time-series information has been adopted by well
logging data scientists. For instance, Feng (2021) utilized a trans-
ferred BiLSTM model to identify lithology from logging data and
verified the effectiveness of time-series consequence features in
lithological forecasting. LSTM models (Shan et al., 2021;
Romanenkova et al., 2022) can extract latent information from logs
and boosted the down-stream logging interpreting tasks. Song et al.
(2023) established a time-domain random forests model to
generate well logs. In summary, LSTM and other sequential neural
network models can effectively finishing interpreting tasks via the
time-series information from well logging and achieved great
performance in several down-stream tasks like drilling monitoring
(Zhang et al., 2023), logs generation (Wang et al., 2022; Song et al.,
2023), lithofacies/lithology prediction (Aftab et al., 2023;
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Carrasquilla, 2023; Dong et al., 2023a,b), reservoir/fracture identi-
fication (Dong et al., 2023a,b; Yang et al., 2023), strata parameters
predictions (Souza et al., 2022; Zhang et al., 2022; Chen et al., 2023;
Kannaiah and Maurya, 2023; Wan et al., 2023).

While recent models have shown advancements in time-series
processing, the presence of long or short time-dependence in
actual sequential data can undermine accurate time-series fore-
casting. Moreover, the relations among different well logs and the
way to modeling did not get fully consideration. To build models
that handle time-series data with multiple types of well logs, this
research introduces a novel graph data and graph convolution
neural networks (GCNs) to further investigate the way to fully dig
up the latent information in well logs.

This paper aims to assess the advantages of incorporating time-
series and spectral information by utilizing GRUs and a self-
attention mechanism to transform logging data into graph data.
Additionally, the convolution process on graph data (GCN) is
introduced. The performance of various models including GCN,
LSTM, RNN, TCN, fully connected artificial neural networks (ANNs),
and Dropout-ANN models are then compared. To further investi-
gate the impact of different blocks in GCN, ablation experiments are
conducted to evaluate their contributions. At last, we paid attention
to the industry application and showed two cases about how to fast
employ the trained GCN models in other formations by transfer
learning. Our research findings indicate that the GCN model can
enhance lithology prediction and has potential for accelerating
petroleum exploration through microbialite classification. The
workflow of this paper is shown in Fig. 1.

2. Geological background

This study was exhibited on logging data and corresponding
lithological labels from the fourth member of Ediacaran Dengying
Formation, Moxi gas field. The Moxi gas field, situated in the central
part of the Sichuan Basin (Fig. 2(a), (b), (c)), is part of the larger
Gaoshiti-Moxi gas field (Anyue gas field) (Wei et al., 2014). The
Dengying Formation (Z2dn) consists of four members, namely
Z2dn1 e Z2dn4 (Fig. 2(d)). The Z2dn2 and Z2dn4 members contain
abundant cyanobacteria, primarily in the form of stromatolite and
thrombolite fabrics (Fig. 2(d)). The first member consists of dolo-
stone with minimal microbial fabrics, while the third member
comprises shale and silty sandstone (Fig. 2(d)). The lithological
interpretation of microbialite is vital and challenging for the hy-
drocarbon exploration in Z2dn2 and Z2dn4 members. The main
exploring targets in the microbialite reservoir are five types,
including:

(1) Dolomicrite (MICR)

The dolomicrite exhibits a dark color with rare depositional
structure in the core observation (Fig.3(a)). Microscopic analysis
(Fig.3(b)) reveals that the primarily putty crystal dolomite and
some powder crystal dolomite are the main depositions of the
dolomicrite.

(2) Stratiform stromatolite (SSTR)

The formation of the stratiform stromatolite related to the mi-
crobial deposits, especially for the microbial mats. Microbial mats
are formed through the active metabolization of cyanobacteria
(Zhu et al., 2020, 2022). The microbial mats are manifested as
abundant parallel and laminated stripes on the drilling cores
(Fig. 3(c), red frame). On the mesoscopic scale, the stratiform
stromatolite (Fig. 3(c), red frame) tend to co-develop with wavy
stromatolite (Fig. 3(c), yellow frame). On the microscopic scale, the



Fig. 1. Workflow of this study.
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stratiform stromatolite exhibits intermittent dark lines (Fig. 3(d))
and the superimposition of continuous dark lines (Fig. 3(d)). Most
pores are filled by fine crystal dolostone (Fig. 3(d)).

(3) Wavy stromatolite (WSTR)

The origin of wavy stromatolite is closely associated with cya-
nobacteria. From the microscopic analysis, the wavy stromatolite
exhibits dense and dark laminations with a large curvature
(Fig. 3(e)), semi-circle structure (Fig. 3(f)), and superimposing from
bottom to the top (Fig. 3(f)). Microscopically, a significant number
of pores developed along the direction of strips at the interlayer
positions (Fig. 3(g)). Wavy stromatolites tend to exhibit the devel-
opment of primary pores and some dissolving pores tend to
develop in the wavy stromatolite (Tang et al., 2022; Zhu et al., 2020,
2022; Fig. 3(g), red frame). Wavy stromatolite shows significant
reservoir potential.

(4) Thrombolite (THRO)

Similar to stromatolites, the thrombolite has been proven that
the formation of thrombolites is closely linked to bacterial meta-
bolism. Core observational analyses reveal that thrombolites
exhibit distinct dark clots (indicated by yellow and red arrows in
Fig. 3(h) and (i)), in contrast to the layered or laminated appearance
of stromatolites. Under microscopic examination, thrombolites
appear as densely packed dark clots (Fig. 3(j)). These clots mainly
exhibit diffusing clots (indicated by red arrows in Fig. 3(j)). The
formation of pores in thrombolites occurs through dissolution (blue
part, Fig. 3(j)), showing great potential for reservoir development.

(5) Siliceous stromatolite (SILIS)

The siliceous stromatolite is a lithological variationmostly found
in the fourth member of the Dengying Formation. The siliceous
stromatolite closely resembles the stratiform stromatolite, as both
exhibit curved stocking strips (Fig. 3(k)). Microscopically, the main
distinction lies in the development of quartz primarily at the in-
terlayers (Fig. 3(l)). Additionally, quartz crystallization occurs at the
interlayer fractures (Fig. 3(l)). The presence of quartz in the sili-
ceous stromatolite does not significantly enhance reservoir pore
quality. Nevertheless, due to their brittleness, the quartz-rich layers
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are suitable for fracturing during development (Yarali and
Kahraman, 2011). Furthermore, the siliceous stromatolite is found
adjacent to high-quality reservoirs such as thrombolite and wavy
stromatolite. These neighboring layers can undergo hydro-
fracturing and generate fractures.

3. Data and methods

3.1. Logs preprocessing and latent information modeling

A total of 44 wells containing continuous microbial depositing
sequences in Z2dn4 were selected from the Moxi gas field (two wells
are preserved,without training). To assess the log integrity across the
wells, eight types of logs were chosen: acoustic log (AC), caliper well
log (CAL), compensated neutron log (CNL), density log (DEN),
gamma-ray log (GR), photoelectric absorption cross-section index
log (PE), deep lateral resistivity log (RLLD), and shallow resistivity log
(RLLS). Prior to lithology forecasting, data preprocessing is per-
formed using the method proposed by Zheng et al. (2022), involving
three steps: (1) depth calibration, (2) removal of invalid values, and
(3) normalization. A total of 10,367 valid data points (from 42 wells,
logging data with labels) were collected. These labels of lithofacies
were collected based on petrologies, sedimentary textures and
structures, depositing patterns of the lithology from cutting de-
scriptions, core observations and microscopic analysis. In this
research, labels interpreted by terms of the shapes of log curves
where no cuttings or cores are avoidable to ensure the high quality of
the labels. Cross-plotting analysis reveals the relationships between
two logs and a significant overlap in data distribution (Fig. (4)).
Fig. 5(a) indicates an imbalanced data distribution. To address this
issue, the synthetic minority over-sampling technique (SMOTE) al-
gorithm (details can be seen inTable 1), as shown in Fig. 5(b) (Chawla
et al., 2002), was employed and yielded 12570 data for training.

From the knowledge of sedimentology, the depth represents the
sedimentary time points in geological history. Based on this,
continuous logging data can be considered a time-series sequence,
similar to temperature fluctuations over years. Similarly, informa-
tion is also concealed within the different types of logs. Manual
logging interpretation involves comparing and interpreting
different logs. For instance, Passey et al. (1990) proposed the DlogR
index, which is calculated by the difference between the resistivity
and sonic logs, to predict the TOC. Therefore, comparisons among



Fig. 2. Locations, paleogeography map, research areas and simplified stratigraphic column of the Moxi gas field central Sichuan basin. (a) The locations of Moxi gas field, central
Sichuan basin, Taihe gas field, north slope of central Sichuan basin and Triassic Pengzhou gas field, west Sichuan basin (The Moxi gas field is the main research area. The Taihe gas
field and Pengzhou gas field are the experimental research areas, which are introduced to test the model's ability of fast employment in other formations); (b) the paleogeography
map of the fourth member of Dengying Formation (Modified from Liu et al., 2017; L. Wang et al., 2020; Liu et al., 2021), the red dotted line is the boundary of Sichuan Basin and the
red square is the study area; (c) the location and wells distribution of Moxi gas field; (d) the stratigraphic column of the Dengying Formation (Modified from Zhu et al., 2020).
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different logs are beneficial for interpretations. To capture latent
information, this study disregards traditional correlation analysis
and treats logs as a complete spectrum. As the sampling window
moves, a series of spectra forms a time-series sequence in the
vertical direction (Fig. 6(a)). After the gate recurrent unit (GRU)
processing (Fig. 6(b) and (c)), the depth-series spectral data are
transformed into latent graphs.
1516
3.2. Gate recurrent unit

The gate recurrent unit (GRU) is a simplified long short-term
memory (LSTM) model used for processing time-series informa-
tion (Cho et al., 2014). The GRU block consists of multiple GRU
models, with a self-attention mechanism added to the final GRU
(Fig. 7(a)).



Fig. 3. The petrological features of the Dengying-4 Member in the Moxi gas field by mesoscopic and microscopic analysis. (a) Dark dolomicrite with breccia developed, Moxi 23; (b)
puttyepowder crystal dolomite, Moxi 23; (c) light gray dolomicrite, stratiform stromatolite develops in the upper part (red frames) and waery stromatolite develops in the lower
part (yellow frame), Moxi 105; (d) putty crystal dolomite, continuous and vertical stocking stromatolite developed (red arrow), Moxi 105; (e) light gray wavery stromatolite (red
arrow), Moxi 105; (f) core scanning image of wavery stromatolite (red frame), Moxi 21; (g) putty crystal dolomite, microbialite strips stocked and bend with a large curvature that
forms a semi-circle structure (red frame), pores developed (blue part), Moxi 108; (h) mid gray thrombolite, diffusing clots (yellow arrow), semicircular spherical clots (red arrow),
Moxi 105; (i) mid gray thrombolite, diffusing clots (yellow arrow), Moxi 105; (j) putty crystal dolomite, semicircular spherical dark clots (red arrow) developed, Moxi 22; (k)
siliceous stromatolite (red frame), Moxi 13; (l) siliceous stromatolite, Moxi 105.
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Fig. 4. Cross-plot of well logs and corresponding lithological labels in Moxi gas field, central Sichuan basin (From 44 wells).

K.-R. Li, J.-M. Song, H. Wang et al. Petroleum Science 22 (2025) 1513e1533
Let X represents the logging data,

X ¼

0
BB@

x11 x12 // x18
x21 x22 // x28
« « « «

xn1 xn2 // xn8

1
CCA (1)

xij represents log data from log type j, where i denotes the depth of
log data.

The spectra in depth d, denoted as Sd, is composed of eight
horizontal logs.
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Sd ¼ ð xd1 xd2 / xd8 Þ (2)

Each depth's spectra enter an independent GRU (Fig. 7(a)) and
generates a corresponding hidden state h. An attention mechanism
is added in the last GRU to produce the adjacent matrix and pro-
duce the graph eventually (Fig. 7(a)).

The GRU has two gates: the reset gate rt and the update gate Zt.
The spectra from depth d and window t are multiplied the matrix
W(z), while the hidden state of time step t�1 is multiplied by the
matrix U(z). BothW(z) and U(z) are data-driven. The sum of these two
parts is then passed through a sigmoid function and Zt is reached



Fig. 5. Distributions of the lithological labels in Moxi gas field, central Sichuan basin (SSTR ¼ stratiform stromatolite; THRO ¼ thrombolite; WSTR ¼ wavery stromatolite;
SILIS ¼ siliceous stromatolite; MICR ¼ dolomicrite; without two preserved wells, from 42 wells). (a) Original labels distribution; (b) the label distribution after data augmentation
(dark pinks represent the counts of the data augmentation) by SMOTE (Chawla et al., 2002).

Table 1
The pseudocode of SMOTE algorithm.

Algorithm synthetic minority over-sampling technique (SMOTE) (N, k)

Input:
Minority Class Samples: List of minority class samples
N: Percentage of SMOTE (e.g., 100% would double the minority class size)
k: Number of nearest neighbors to use for synthetic sample generation

Output: Synthetic Samples: List of synthetic samples generated
1: Initialize Synthetic Samples as an empty list
2: Calculate N’ # the smallest integer greater than or equal to N/100
3: for each sample x in Minority Class Samples do
4: Find k nearest neighbors of x using Euclidean distance
5: for i from 1 to N0 do
6: Randomly select one of the k nearest neighbors # call it nn
7: Generate a synthetic sample s by interpolating between x and nn:
8: for each feature f in x, calculate the difference df ¼ nn[f] - x[f]:
9: Multiply df by a random number between 0 and 1, call this delta
10: The synthetic feature value s[f] ¼ x[f] þ delta
11: Add the synthetic sample s to Synthetic Samples
12: end for
13: end for
14: end for
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(Fig. 7(b)). The procedure can be represented as

zt ¼ sigmoid
�
WðzÞ � xt þUðzÞ �ht�1

�
(3)

The reset gate (rt) functions to select the information to be
ignored. It has similar formulation like Zt. The formula of rt is

rt ¼ sigmoid
�
WðrÞ � xt þUðrÞ �ht�1

�
(4)

With the calculated rt and Zt, a new memory unit, ht’ is computed
using

ht0 ¼ tanh
�
WðhÞ � xt þ rt 1UðhÞ � ht�1

�
(5)

The output of GRU, ht, will be updated by
1519
ht ¼ zt 1ht�1 þð1� ztÞ1ht0 (6)

ht represents the hidden layer of last state of GRU. Due to the
sequential input of spectra in a window, the time-series informa-
tion is transferred into ht. The adjacent matrix W is then calculated
by the self-attention mechanism (Fig. 7(a)). The W is derived from
the self-attention mechanism as follows.

Q ¼ WðzÞWðrÞ; K ¼ WðzÞWðhÞ; V ¼ softmax

 
QKTffiffiffi

d
p

!
(7)

In the formula, Q and K represent the query and key in the self-
attention mechanism, respectively. W(z), W(r), and W(h) are learn-
able parameters in Eqs. (3)e(5). d denotes the size of ht. The
dimension of the resulting matrixW is n�n, where n represents the
number of log types (n ¼ 8 in this case).

3.3. Graph convolution network block

Graph convolution differs from convolution operations in
convolution neural networks (CNNs) and other neural networks.
Graph convolution relies on Laplacian transformation and graph
Fourier transform (Fig. 8).

The adjacent matrix gained by GRUs are the basis of Laplacian
transformations. The adjacent matrix W is input into the graph
Fourier transform block and get the Laplacian feature vector L (Cao
et al., 2020, Fig. 8). Subsequently, L undergoes processing through
discrete Fourier transform (DFT). DFT is defined as

LDFT ¼
XN�1

n¼0
L$½cosð2pmn =NÞ� j $ sinð2pmn =NÞ� (8)

wherem represents the frequency domain signal with m2 [0,7], n
represents the number of time-domain discrete signals with
n 2 [0,7], and N represents the number of log types, specifically
N ¼ 8.

The LDFT is convoluted in one dimension and then enters the
subsequent gated linear unit (GLU). The GLU is defined as



Fig. 6. Diagram of the process of extracting logging data and transmitting to latent graphs via sampling window. (a) Graphic representation of actual logging data; (b) diagrammatic
of the latent graph from the first spectra in the sampling window; (c) diagram of the latent graph from the last spectra in the sampling window.

Fig. 7. Workflow of graph generating. (a) Graph generating by a series GRU and a self-
attention block; (b) diagram of GRU (Modified from Cho et al., 2014).
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GLUðLDFTÞ¼ ðLDFT �WGLU þ bGLUÞ5ðLDFT �VGLUþ cGLUÞ (9)

where WGLU, bGLU, VGLU, and cGLU are learnable parameters.
1520
Prior to graph convolution, GLU(LDEF) should be processed by
inverse discrete Fourier transform (iDFT) to reconstruct the degree
matrix D, adjacent matrix A, and Laplacian matrix L.

L ¼ D� A (10)

Sampling feature maps using images kernels provides a unique
example for graph convolution. The key distinction between graph
convolution and image convolution lies in the connectivity of
vertices, where not all vertices are connected, unlike the pixels in
images are all connected. Employing the kernel method in graph
domain poses challenges. In order to access the information of
adjacent vertices, graph convolution is defined as

Hlþ1 ¼ s
�
LHlW l

�
(11)

Here, H represents the hidden layer, s is the nonlinear activate
function, and Wl signifies the matrix parameters of hidden layer l.

In order to enhance the impact of the self-degree of graphs, L
can be substituted with symmetric normalized Laplacian matrix
Lsym.

Lsym ¼ D�1
2A�D�1

2 ¼ D�1
2ðD� AÞD�1

2 (12)

Following feature mapping through graph convolution, the data
flow must be flattened. The flattened data is then subjected to
softmax regression to output lithologies.
3.4. Evaluation

This paper introduces a novel loss function for the GCN Block.
The loss function consists of two components. The first part eval-
uates the variation of Xin and X using mean squared error.



Fig. 8. Workflow of graph convolution network block.
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Loss1st ¼ MSEðxin; xÞ ¼
1
N

XN

i¼1
ðX � XinÞ

2
(13)

The second part is the classification loss between the predicted
probability distributions of labels (elabel~) and the actual category
labels (elabel), defined as

Loss2nd ¼ cross entropyðlabel; label�Þ ¼ �log

 
elabelP
elabel

�

!

(14)

The overall loss is

Loss ¼ 1
N

XN

i¼1
ðX � XinÞ

2
� log

 
elabelP
elabel

�

!
(15)
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To ensure the accuracy of machine learning models and prevent
overfitting, we divided the dataset into training (60%, 7540), vali-
dation (30%, 3370), and test sets (10%, 1657). To compare the per-
formance of different models, we selected prevalent evaluation
metrics including accuracy, precision, recall, F1-score, and Area
Under the ROC Curve (AUC).

Accuracy measures how often the model correctly predicts the
actual label of a data point. It is calculated as the ratio of the number
of correct predictions to the total number of predictions. A high
accuracy indicates the model's strong ability to predict true labels
correctly. However, accuracy alone can be misleading if there is a
class imbalance in the dataset.

Precision measures the proportion of positive predictions made
by the model that are actually correct. It is calculated as the ratio of
true positives divided by all positive predictions (including false
positives). High precision indicates a low false positive rate. How-
ever, optimizing for precision alone may result in a low recall.



Fig. 9. Logging data and lithological analysis column of Moxi 9, Moxi gas field, central Sichuan Basin.

Fig. 10. Visualization of spectra (left part in each sub-figure) and graph (right part in each sub-figure) from Moxi 9, Moxi gas field, central Sichuan Basin (* denotes the
normalization of logging data). (a) 5308.08 m, SSTR; (b) 5300.06 m, WSTR; (c) 5224.68 m, WSTR; (d) 5210.53 m, THRO; (e) 5115.68 m, MICR; (f) 5045.75 m, SILIS; (g) 5035.92 m,
SSTR; (h) 5013.27 m, THRO.
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Recall measures the proportion of actual positive cases that are
correctly predicted by the model. It is calculated as the ratio of true
positives divided by the sum of true positives and false negatives.
High recall indicates a low false negative rate. However, recall alone
does not consider false positives.

F1-score balances both precision and recall by taking their
harmonic mean. It captures both false positives and false negatives.
A model with a high F1-score has both high precision and high
recall.

The analysis metrics (Eqs. (16)e(20)) include TP for true positive
predicted samples, TN for true negative predicted samples, FP for
false positive predicted samples, and FN for false negative predicted
samples. Score values range from 0 to 1, with higher values indi-
cating better model performance.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(16)

Precision ¼ TP
TP þ FP

(17)

Recall ¼ TP
TP þ FN

(18)

F1-score ¼ 2TP
2TP þ FP þ FN

(19)

AUC ¼
ð1
0

TP
TP þ FN

� FP
TN þ FP

d
�

FP
TN þ FP

�
(20)
Fig. 11. Training performance of GNN (get stable means the model optimization stopped). (a
variation of epoch 400 to 1200); (b) Accuracy variation with training datasets and test dat

Table 2
The hyperparameters of different models.

Models Be

Window Epoch Learning rate

Min 2 600 1e�4
Max 9 1600 9e�2

GCN 3 1200 5e�4
LSTM e 1300 5e�4
RNN e 1200 1e�4
ANN e 1200 1e�4

When the dropout rate is 0, the CNN model becomes FCNN model.
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4. Results

4.1. Latent graphs

In graphmachine learning, the latent graphs include spectra and
adjacent matrices. To illustrate the generation of latent graphs,
several logging data is visualized fromMoxi 9 (Fig. 9). All curves are
normalized and annotated with an asterisk (*). Fig. 10 displays a
time-series spectrum (the left part in each sub-figure of Fig. 10) and
the corresponding adjacent matrices graphs (the right part in each
sub-figure of Fig. 10). Spectra with distinct shapes indicate different
graph representations (Fig. 10). Spectra from same lithological la-
bels display similar shapes (Fig. 10(b) and (c)) while the similar
geometric features in the spectra would not reflect the same li-
thology (Fig. 10(d) and (e)). The complex projections between
logging data and lithological labels is more flexible than traditional
lithological interpretations by fixed logging plates. The visualized
adjacent matrices are completely different (Fig. 10). The complexity
of the adjacency matrix directly reflects that the graph data
structure has better information entropy and information gain
when characterizing logging data. With latent graphs, relations of
different types of well logs are constructed, digging up the latent
information from well logs and boosting the storage of latent in-
formation instead of training from data directly.
4.2. GCN model

The optimal GCN model was obtained after training 1200
epochs (Fig.11). The hyper-parameters of the GCNmodel are shown
Table 2. The results are shown in Fig. 12(a). The accuracy, precision,
recall of training datasets are 0.98, 0.97 and 0.97. The F1-score is
) Loss variation with training datasets and test datasets (the sub-figure is the zoom loss
asets.

st hyperparameters

Batch size Dropout rate Layer numbers

16 0 2
128 0.6 10

32 0.4 e

64 0.3 5
32 0.3 5
32 0.3 6



Fig. 12. Performance of time-series-based models and data-shuffled models. (a) GCN; (b) LSTM; (c) RNN; (d) TCN; (e) FC-ANN; (f) Dropout-ANN.

K.-R. Li, J.-M. Song, H. Wang et al. Petroleum Science 22 (2025) 1513e1533
0.97 and the AUC is 0.93. The respective measurements for vali-
dation datasets are 0.93, 0.94, 0.97, 0.93, and 0.98. The respective
measurements for test datasets are 0.9, 0.93, 0.94, 0.9, and 0.95.
4.3. LSTM model

Long short-term memory (LSTM) is a model to handle the long
time-series sequence data. The results are shown in Fig. 12(b). The
top-performing LSTM model achieves accuracy, precision, recall,
F1-score and AUC values of 0.86, 0.85, 0.87, 0.86 and 0.88, respec-
tively, on the training datasets. The validation datasets yield mea-
surements of 0.82, 0.82, 0.81, 0.82 and 0.85 for accuracy, precision,
recall, F1-score and AUC, respectively. The test datasets produce
measurements of 0.8, 0.79, 0.78, 0.8 and 0.78 for accuracy, preci-
sion, recall, F1-score and AUC, respectively. The hyper-parameters
of the LSTM model are shown Table 2.
4.4. RNN model

The architecture of recurrent neural network (RNN) is similar to
that of the LSTM model. RNN is considered a fundamental model
for processing short time-series data. The results are shown in
Fig. 12(c). The respective measurements for the training datasets
are 0.69, 0.7, 0.73, 0.69 and 0.75. The respective measurements for
the validation datasets are 0.65, 0.64, 0.7, 0.65 and 0.78. The
respective measurements for the test datasets are 0.61, 0.6, 0.65,
0.61 and 0.72. The hyper-parameters of the RNN model are shown
Table 2.
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4.5. TCN model

The temporal convolutional network (TCN) shares similar ar-
chitecture with LSTM and RNN. The TCN utilizes convolution ker-
nels for time series extraction. The results are shown in Fig. 12(d).
The training datasets yield measurements of 0.73, 0.73, 0.72, 0.73
and 0.79. The validation datasets yield measurements of 0.71, 0.7,
0.68, 0.7 and 0.78. The test datasets yieldmeasurements of 0.7, 0.69,
0.72, 0.7 and 0.78. The hyper-parameters of the TCN model are
shown Table 2.

4.6. FC-ANN and Dropout-ANN

The artificial neural network (ANN) is an effective model that
has been successfully implemented in logging interpretation.
Dropout is a commonly used technique in neural networks to
mitigate overfitting.

The fully connected artificial neural network (FC-ANN) achieves
respective accuracy, precision, recall, F1-score and AUC of 0.82,
0.83, 0.58, 0.82 and 0.52 in the training datasets. The respective
measurements for the validation datasets are 0.79, 0.8, 0.49, 0.79
and 0.63. The respective measurements for the test datasets are
0.61, 0.5, 0.56, 0.61 and 0.58. The results are shown in Fig. 12(e).

The local dropout connected artificial neural network (Dropout-
ANN) achieves respective accuracy, precision, recall, F1-score and
AUC of 0.85, 0.84, 0.81, 0.85 and 0.73 in the training datasets. The
respective measurements for the validation datasets are 0.81, 0.76,
0.77, 0.81 and 0.77. The respective measurements for the test
datasets are 0.67, 0.7, 0.63, 0.67 and 0.62. The hyper-parameters of
the FC and Dropout-ANNmodels are shown Table 2. The results are
shown in Fig. 12(f).



Fig. 13. Confusion matrixes of time-series-based models and data-shuffled models. (a) Confusion matrix of GNN; (b) confusion matrix of LSTM; (c) confusion matrix of RNN; (d)
confusion matrix of RNN; (e) confusion matrix of FC-ANN; (f) confusion matrix of Dropout-ANN.

Table 3
The performances of models with the only GR input (all models reach SOTA).

Best model The performance in the preserved datasets

Acc Pre Recall F1 AUC

LSTM-sequential 0.44 0.43 0.44 0.44 0.55
RNN-sequential 0.39 0.37 0.36 0.38 0.40
TCN-sequential 0.41 0.40 0.41 0.40 0.43
FC-ANN-sequential 0.22 0.20 0.21 0.22 0.19
Droptout-ANN-sequential 0.25 0.22 0.23 0.24 0.20
LSTM-unsequential 0.23 0.21 0.22 0.23 0.20
RNN-unsequential 0.19 0.19 0.19 0.20 0.19
TCN-unsequential 0.20 0.20 0.20 0.20 0.20
FC-ANN-unsequential 0.22 0.19 0.21 0.22 0.21
Droptout-ANN-unsequential 0.24 0.22 0.23 0.24 0.21

Note: Acc ¼ Accuracy, Pre ¼ Precision; F1¼F1-score.

Table 4
The pseudocode of Bayesianestatistic algorithm.

Algorithm Bayesianestatistic (L, d, i, k, l, P)

Input: Lithology column L (d, i, l)
Depth d
Depth point i, (iþ1)�(i) ¼ 0.125 m
Lithology of microbialite l
Moving window k
Probability P

Output: Estimate of the conditional probability fromWalther's law via window
moving

1: Initialization: L ¼ {ld1, ld2, ld3, … …, ldi}
2: Initialization: P
3: for count ¼ 0 to int(d/k) do
4: for each k do
5: Num (Pl/l’) ¼ Num (liþ1jli)
6: end for
7: end for
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5. Discussion

5.1. Models comparison

5.1.1. Multi-dimensional indexes comparison
Fig. 12 shows the GCN model demonstrates superior prediction

ability compared to other models (Fig. 12). While FC-ANN and
Dropout-ANN achieve high accuracy in training and validation
datasets, their evaluating metrics drop significantly in the test
datasets (DAccuracy ¼ 0.21, DPrecision ¼ 0.33, DF1-score ¼ 0.21,
Fig. 12(e)). This indicates overfitting of the ANNmodels, where they
perform well on the training data but struggle with unseen data.
Previous research has shown that dropout strategy is effective in
reducing overfitting (Wager et al., 2013; Srivastava et al., 2014;
Pham et al., 2014; Xiao et al., 2016). In this study, a slightly
improved dropout method leads to almost 20% improvement in all
1525
metrics in the whole datasets (Fig. 12(f)). However, with shuffling
and destroying the time-series information, the ANN models per-
formed poorly in microbialite classification. This result reveals the
time-series information boosted the performance of automatic
models.

LSTM models, known for handling long time-series sequences
(Graves, 2012; Srivastava et al., 2015), outperform RNN models,
which are better suited for short time-series sequences (Lipton,
2015). The LSTM models achieve higher evaluating metrics than
RNN models (0.8, 0.79, 0.78, 0.8 and 0.78 vs. 0.61, 0.60, 0.65, 0.61
and 0.72, in the test datasets, Fig.12(b) and (c)), indicating the LSTM
model has stronger suitability for capturing time-series informa-
tion in data-logging processing. On the other hand, the time-series
information in the well-logging data is close to the long time-series



Fig. 14. Results of the statistics to detect the lithology change. (a) Window size ¼ 2; (b) window size ¼ 3; (c) window size ¼ 4; (d) window size ¼ 5.
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information. Although theoretically TCN models are expected to
perform better in time-series modeling tasks (Bai et al., 2018), in
this study, their metrics surpasses RNN models but falls short of
LSTM models. This discrepancy may be due to the TCN model's
super-long receptive field, which exceeds the typical scale of de-
posit fluctuation for microbialite. This result proves the type of
time-series information in the well-logging data is the long time-
series information but not the super-long type. The length of
time-series is possibly controlled by the deposition length.

In addition, expect for time-series modeling, another distinction
between the GCN model and the time-series models (LSTM, RNN
and TCN models) is the spectra, which models the latent informa-
tion of binary well logs. The equal and high metrics in the GCN
suggests the latent information among well logs is another method
to improve model's performance (Fig. 12(a), (b), (c), (d)).
5.1.2. Generalization test comparison
The generalizability of machine learning models to new data

(two preserved wells, n ¼ 284) is another critical aspect in evalu-
ating model performance. To simulate real-world well-logging
interpretation, we utilized untrained logging-label paired data to
test the models' ability to make predictions on unseen data. In
practical exploration, understanding the specific types of mis-
classifications made by a model can provide more actionable in-
sights than summary evaluation metrics alone. We visualized the
models' confusion matrices on untrained datasets (Fig. 13) to reveal
the distribution of prediction errors across microbialite classes. The
graph convolutional network (GCN) model demonstrated superior
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generalization capabilities, with test accuracies exceeding 0.95 for
all microbialite types (Fig. 13(a)).

The long short-term memory (LSTM) model demonstrated
excellent ability in identifying thrombolite (THRO), siliceous stro-
matolite (SILIS), and dolomicrite (MICR), with accuracies exceeding
0.95 for each class (Fig. 13(b)). However, the LSTM model showed
limitations in distinguishing between wavy stromatolites (WSTR)
and stratiform stromatolites (SSTR). 25% of WSTR samples were
misclassified as SSTR by the LSTM model (Fig. 13(b)). For SSTR
samples, 7% were incorrectly predicted as WSTR (Fig. 13(b)).

The recurrent neural network (RNN) model exhibited similar
performance to the LSTM, with slightly reduced accuracy on THRO
(0.94), SILIS (0.95), and MICR (0.90) (Fig. 13(c)). The RNN model
performed worse at predicting SSTR (0.71) and WSTR (0.58)
(Fig. 13(c)) compared to the LSTM (Fig. 13(b)). 17% and 12% of SSTR
samples were misclassified by the RNN as THRO and WSTR,
respectively, while 39% ofWSTR samples were incorrectly classified
as SSTR (Fig. 13(c)).

The temporal convolutional network (TCN) model matched the
LSTM model's accuracy on THRO, SILIS, and MICR prediction
(Fig. 13(d)). However, the TCN demonstrated similar difficulties as
the LSTM and RNN models in distinguishing between SSTR and
WSTR (Fig. 13(d)). 11% of SSTR samples were mispredicted as WSTR
by the TCN, while 46% of WSTR samples were mistakenly identified
as SSTR (Fig. 13(d)), indicating poorer delineation of these two
classes compared to the other models.

For the fully connected and dropout artificial neural network
(ANN) models, performance on THRO, SILIS, and MICR prediction



Fig. 15. Performance variations among the number of logs in different datasets. (a)
Train datasets; (b) validation datasets; (c) test datasets.
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was comparable (0.92, 0.95, and 0.89, respectively, Fig. 13(e)). The
Dropout-ANNmodel demonstrated improved identification of SSTR
(0.78) and WSTR (0.60) versus the FC-ANN model (0.71 and 0.51,
respectively, Fig. 13(f)).

Visualizing and comparing the confusion matrices highlights
the relative strengths andweaknesses of eachmodel architecture at
predicting specificmicrobialite classes from the unlabeled test data.
In summary, for microbialite interpretation, the challenge is sepa-
rating the WSTR and SSTR. With the assistance of time-series
modeling, the performance of distinguishing WSTR and SSTR
would be boosted. By introducing additional latent information
among logs, the GCN would improve the capability of separating
the two closing types.

5.2. Importance and analysis of the time-series

The machine learning models can be categorized into three
groups based on the data representations used. The graph con-
volutional network (GCN) model incorporates both time-series and
spectral information from the well logs. The long short-term
memory (LSTM), recurrent neural network (RNN), and temporal
convolutional network (TCN) models solely utilize time-series data.
Finally, the fully-connected and dropout artificial neural network
(ANN) models do not explicitly encode time-series or spectral data.

Across training, validation, test, and hold-out datasets, the GCN
model achieved superior performance for microbialite classifica-
tion. The LSTM and TCN models also demonstrated acceptable
predictive capabilities, with sequential models showing an advan-
tage over non-sequential architectures. To isolate the impact of
time-series information, we performed an experiment using only
the GR log as input, precluding construction of the latent graph
structure. In this setting, we compared the LSTM, RNN, and TCN
models versus the FC-ANN and Dropout-ANN models.

The accuracy, precision, recall, F1-score, and AUC metrics
(Table 3) indicate that time-series models (LSTM, RNN, TCN)
significantly outperformed the non-sequential ANN models given
GR log input alone (Table 3). To further analyze the importance of
temporal ordering, we evaluated models on shuffled GR data with
randomized time steps. On shuffled data, all metrics of the LSTM,
RNN, and TCN models decreased substantially to the level of the
ANN models, which showed little change in performance (Table 3).
The degraded time-series model performance on shuffled data
demonstrates that temporal ordering of the logs provides critical
information for lithological prediction.

To examine the relationship between time-series structure and
lithological transitions, we implemented a Bayesian statistical al-
gorithm (pseudocode in Table 4) that models the sedimentary
sequence as a Markov process.

At a window of 2 (0.25 m), transitions between the same li-
thology dominated (Fig. 14(a)). At a window of 3 (0.375 m), tran-
sitions between different microbialites became apparent
(Fig. 14(b)), suggesting this captures an appropriate scale for lith-
ological cycles. Larger windows (0.5, 0.625 m) again showed self-
transitions dominating (Fig. 14(c) and (d)). The detected peak
transition probability scale of 3 matches the GCN model's window
size. Overall, these statistical results support incorporating time-
series data to model lithological sequences. The superior perfor-
mance of time-series models coupled with the detected lithological
transitions validate that time-series information from well logs
enhances microbialite classification.

5.3. Importance and analysis of the spectra

The spectral representations in the GCN model provide another
potential improvement over standardmachine learning approach. To
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evaluate the influence of spectral length and logging types, as well as
discuss the importance of spectra for lithological prediction, we
trained a series of GCN models with different input data configura-
tions. The accuracy, precision, recall, F1-score, and AUCmetrics were



Fig. 16. The correlation matrices of well logs. (a) Pearson correlation matrix; (b) Spearman correlation matrix.

Table 5
The results of ablation experiments (in the test datasets, all models reach SOTA).

Ablations Performance

Accuracy Precision Recall F1-score AUC

GCN (baseline) 0.90 0.93 0.94 0.90 0.95
w/o GRU 0.72(�0.22) 0.71(�0.22) 0.73(�0.21) 0.72(�0.18) 0.70(�0.25)
w/o Attention 0.84(�0.06) 0.80(�0.13) 0.82(�0.12) 0.84(�0.06) 0.86(�0.09)
w/o DFT 0.82(�0.08) 0.81(�0.12) 0.82(�0.12) 0.82(�0.18) 0.73(�0.22)
w/o GFT 0.80(�0.10) 0.81(�0.12) 0.80(�0.14) 0.80(�0.10) 0.79(�0.16)
w/o Convolution 0.62(�0.28) 0.59(�0.34) 0.61(�0.33) 0.61(�0.29) 0.48(�0.47)
Add 1 GNN 0.89(�0.01) 0.88(�0.05) 0.89(�0.05) 0.90(0.00) 0.95(0.00)
w/o GNN 1 0.82(�0.08) 0.80(�0.13) 0.81(�0.13) 0.82(�0.08) 0.81(�0.14)
w/o GNN 2 0.83(�0.07) 0.82(�0.11) 0.80(�0.14) 0.83(�0.07) 0.81(�0.14)

Note: w/o means without.

K.-R. Li, J.-M. Song, H. Wang et al. Petroleum Science 22 (2025) 1513e1533
averaged across combinations of logging data types for the training,
validation, and test sets. For example, GCN-2 indicates GCN models
trained on two logging data types. Averaging aims to reduce the
influence of differences between logging type combinations.

Across all datasets, model performance improved with the in-
clusion of additional logging data to construct longer spectra
(Fig. 15). These results suggest the length of the spectral repre-
sentation positively influences GCN model capabilities. To analyze
relationships between logs and assess the value of constructing
spectra, we computed Pearson (Fig. 16(a)) and Spearman correla-
tion matrices (Fig. 16(b)). The RLLD and RLLS logs exhibit high
correlation in both matrices. In standard machine learning, one of
these redundant logs would often be discarded. However, dropping
either RLLD or RLLS resulted in decreased accuracy, precision,
recall, F1-score, and AUC of 0.85, 0.84, 0.84, 0.85, 0.86 and 0.82,
0.83, 0.81, 0.82, 0.84, respectively (in the test datasets, in contrast
with the performance of 0.9, 0.93, 0.94, 00.9 and 0.95, Fig. 12(a)).
This indicates the highly correlated logs provide additional latent
information to the GCN models.

The Pearson and Spearman matrices show RLLD and RLLS have
similar but distinct correlations to other logs. Specifically, RLLD logs
are more negatively correlated across features (Fig. 16). This com-
plementary correlation, alongside the performance drop when
excluding either log, suggests the spectral boost stems not from
redundancy but rather from extracting complex latent signals.
Overall, constructing spectra from multiple logs, even if correlated,
allows the GCN model to learn richer representations for improved
lithological prediction.
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5.4. Ablation experiments for GCN

Ablation experiments were conducted to evaluate the effects of
different components within the GCN model architecture.
Removing the GRU results in building graphs directly from raw
logging datawithout any time series feature extraction. This caused
accuracy, precision, recall, F1-score, and AUC to drop substantially
to 0.72, 0.71, 0.73, 0.72, and 0.70, decreasing by 0.18, 0.19, 0.21, 0.18,
and 0.25, respectively (Table 5). These significant declines indicate
the graph construction process is critical for the GCN model.

Eliminating the self-attention mechanism leads to smaller de-
creases in performance of 0.06, 0.13, 0.12, 0.06, and 0.09 for the
three metrics (Table 5), suggesting self-attention provides moder-
ate improvements. Similarly, excluding the DFT and GFT blocks
results in slight drops in accuracy, precision, recall, F1-score, and
AUC (Table 5), demonstrating the value of graph Fourier transforms
in the GCN.

The most drastic declines occurred when removing convolution
operations, which lowered accuracy, precision, recall, F1-score, and
AUC to 0.62, 0.59, 0.61, 0.61, and 0.48, reducing them by 0.28, 0.34,
0.33, 0.29, and 0.47, respectively (Table 5). These substantial de-
creases highlight convolution as one of the most vital operations
within the GCNmodel. Modifying the number of GNN blocks shows
limited effects on overall performance. The architecture with two
GNN blocks appears optimal for microbialite identification.

In summary, the ablation study quantitatively analyzes the
contribution of each component to the GCNmodel capabilities. The
time series feature extraction, graph construction, Fourier trans-
forms, and convolutions are all critical for effective lithological



Fig. 17. Logging data, lithological analysis column and predicting lithological column of the Dengying-2, Taihe gas field, North slope of central Sichuan basin, X well (The actual
lithological labels were obtained by core analysis and microscopic verification).

Fig. 18. The performances of the fine-tune GCN models with different data and
strategy.
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prediction from well log data.
5.5. Applications in other strata

Previous machine learning research has given limited attention
to applications in petroleum exploration. Existing trained models
are constrained to individual strata or depositing areas, restricting
their utility. To demonstrate how pretrained models can overcome
real-world challenges, we present two examples of applying such
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models in practice. The primary strategy for leveraging pretrained
networks on new target formations is via fine-tuning.

Fine-tuning involves initializing a model with weights from
training on a source domain, then continuing training on data from
the target domain of interest. This transfer learning approach al-
lows models to adapt to new tasks and distributions without
requiring full retraining. Fine-tuning pretrained models enables
exploiting knowledge from source domains to accelerate conver-
gence and improve generalization on target tasks with limited data.

Here, we showcase fine-tuning for two scenarios: extending
pretrained lithology prediction models to new geological areas and
formations. In both cases, models trained onwell log data from one
region or stratum are fine-tuned on small target datasets. Fine-
tuning rapidly optimizes model weights to combine generaliza-
tion from the initial training with target-specific adaptation. These
demonstrations highlight the potential for transfer learning to
unlock the value of pretrained models across diverse subsurface
settings. Overall, fine-tuning provides a practical solution to tailor
off-the-shelf machine learning for cost-effective application in new
petroleum exploration initiatives.
5.5.1. The second member of the Dengying Formation
The second member of the Dengying Formation (Dengying-2)

contains similar logging data to Dengying-4 in the Moxi gas field.
We collected 8473 samples from Dengying-2 in the Taihe Gas Field
(Fig. 1(a), THG, NS), including wackestone, boundstone, thrombo-
lite, silicified microbialite, micrite, and a new lithology-
spongiostromata boundstone. Missing logs were generated via a
semi-supervised convolutional neural networks (CNN) and bidi-
rectional long-short term memory networks (BiLSTM) (CNN-
BiLSTM, Fig. 17, shadow part). To study the impact of dataset size,
samples were split into subsets of 500e8000 data points (Fig. 18).
The 500-sample set simulates limited logging data where over-
fitting readily occurs during training.



Fig. 19. Logging data, lithological analysis column and predicting lithological column of the Triassic Leikoupo-43, Pengzhou gas field, west Sichuan Basin, X well (The actual
lithological labels were obtained by core analysis and microscopic verification).

Fig. 20. The confusion matrix of the fine-tune GNN model. (a) Fourth member of Dengying Formation, Taihe Gas field, North slope of central Sichuan basin; (b) Leikoupo-43,
Pengzhou gas field, west Sichuan basin.
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Results demonstrate fine-tuning performance improves as more
training data is utilized (Fig. 18). With only 500 samples, accuracy,
precision, recall, F1-score, and AUC of the fine-tuned model drop-
ped compared to training on larger sets (Fig. 18). 500-sample
training and validation accuracy were 0.86 and 0.64 respectively,
indicating overfitting. To enable effective fine-tuning, a two-step
approach was adopted - the pretrained model extracted features,
then multiple support vector machine (SVM) classifiers were
trained on the features. This boosted performance for the 500-
sample case (Fig. 18). With the full 8000 samples, exceeding 80%
samples can be right predicted (Fig. 20(a)).

In summary, sufficient training data is crucial to realize the full
benefits of fine-tuning for lithology prediction. When data is
1530
limited, supplementing fine-tunedmodels with classifiers like SVM
can improve generalization. Overall, this study demonstrates how
transfer learning strategies can adapt pretrained models to new
formations given modest target domain data.
5.5.2. The third submember of the fourth member of the Leikoupo
Formation

The fourth member of the Leikoupo Formation (Leikoupo-4),
deposited during the late Triassic, contains abundant microbial
sediments including wackestone, thrombolite, and algal dolarenite.
Due to mineralogical variations from different depositional envi-
ronments, models trained on the fourth member of the Dengying
Formation cannot be directly applied to Leikoupo-4. Developing
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accurate lithology prediction rapidly is essential yet challenging in
practice. Fine-tuning provides a widely adopted strategy in com-
puter vision to adapt pretrained models.

We demonstrate fine-tuning on Leikoupo-4 with a model pre-
trained on Dengying Formation data. Over 2000 samples were
collected from the third submember of Leikoupo-4 (Leikoupo-43)
in the Pengzhou gas field (Fig. 1(a)ePZG). The train: validation: test
ratio was 6:3:1. Compared to the Dengying Formation, logging data
from Leikoupo-43 lacks photoelectric (PE) curves (Fig. 19). Logs
were also sparse. To input complete consistent data, missing logs
were generated via a CNN-BiLSTM model (Fig. 19, shadow part).

Fine-tuning began by loading pretrained model hyper-
parameters and adjusting the output dimension from five (Den-
gying-4 lithologies) to three (Leikoupo-43 lithologies). The altered
model was then trained on the Leikoupo-43 data. Accuracy, preci-
sion, recall, F1-score, and AUC on the train, validation, and test
datasets were 0.84, 0.83, 0.85; 0.82, 0.81, 0.84; and 0.81, 0.81, 0.83,
respectively. Exceeded 85% lithologies can be right predicted
(Fig. 20(b)).

In summary, fine-tuning rapidly adapts a pretrained model to
new formations and areas by retraining on small target datasets.
This demonstration highlights the potential of transfer learning to
unlock generalization capabilities from past training for cost-
effective lithology prediction in practice.

6. Conclusion

In this study, various neural network models including Graph
Convolutional Networks (GCN), Long-Short Term Memory (LSTM),
Recurrent Neural Networks (RNN), Temporal Convolutional Net-
works (TCN), and two types of Artificial Neural Networks (ANNs)
were evaluated for lithology prediction within the fourth member
of Dengying Formation, Moxi gas field. Key findings include:

(1) GCN performance: GCN emerged as the superior model,
achieving high metrics in accuracy (0.90), precision (0.93),
recall (0.94), F1-score (0.90), and AUC (0.95), with approxi-
mately 90% of samples correctly classified. Comparison with
other models: LSTM, RNN, and TCN showed better perfor-
mance over ANNs by utilizing sequential logging data,
whereas ANNs exhibited overfitting issues. Misclassifications
were primarily between stratiform and wavery
stromatolites.

(2) Relationships between time-series and sedimentary
sequence: Time-series information boosted models' perfor-
mance because of the better modeling of actual sedimentary
depositing sequence.

(3) Spectral and graph information utilization: Incorporation of
spectral data and the graph data enhanced classification by
identifying multi-log correlations and modeling the latent
information.

(4) Ablation study results: Essential to GCN's performance were
its graph convolutional and gated recurrent unit layers for
effectively processing graph and sequential data, which is
more effective to the find the length of sedimentary
sequence.

(5) Transfer Learning: GCN demonstrated excellent adaptability
to new microbialite types with minimal additional training,
showcasing potential for application across various forma-
tions. Even with a limited dataset (less than 500 samples),
integrating GCN feature extraction with SVM classification
yielded effective results.

In summary, leveraging graph data containing time-series and
spectral information significantly enhances lithology prediction
1531
capabilities. GCN stands out as a particularly promising model for
the petroleum industry, offering efficient generalization to new
domains through graph-structured data and transfer learning.
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Nomenclature

GCNs Graph convolution networks
GRUs Gate Recurrent Units
LSTM Longeshort temporal memory models
RNNs Recurrent neural networks
TCNs Temporal convolution networks
ANNs Artificial neural networks
FC-ANNs fully Connected artificial neural networks
Dropout-ANNs Artificial neural networks with dropout method
XGBoost Extreme Gradient Boost
PINN Physics-informed neural networks
CNN-BiLSTM Convolution neural network combined with bi-

direction LSTM model
SVM Support vector machine
Z2dn Dengying Formation
Z2dn1 First member of Dengying Formation
Z2dn4 Fourth member of Dengying Formation
MICR Dolomicrite
SSTR Stratiform stromatolite
WSTR Wavy stromatolite
THRO Thrombolite
SILIS Siliceous stromatolite
AC Acoustic log
CAL Caliper well log
CNL Compensated neutron log
DEN Density log
GR Gamma-ray log
PE Photoelectric absorption cross-section index log
RLLD Deep lateral resistivity log
RLLS Shallow resistivity log
SMOTE Synthetic minority over-sampling technique
SOTA State-of-the-art/best
TOC Total organic carbon
CNNs Convolution neural networks
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DFT Discrete Fourier transform
GLU Gated linear unit
iDFT Inverse discrete Fourier transform
elabel~ Predicted probability distributions of labels
elabel Actual category labels
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
TP Number of true positive predicted samples
TN Number of true negative predicted samples
FP Number of false positive predicted samples
FN Number of false negative predicted samples
* Normalized logging data
Dengying-2 Second member of the Dengying Formation
Dengying-4 Fourth member of the Dengying Formation
THG Taihe gas field
NS North slope
Leikoupo-4 Fourth member of the Leikoupo Formation
PZG Pengzhou gas field
Leikoupo-43 Third submember of Leikoupo-4
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