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a b s t r a c t

In the realm of subsurface flow simulations, deep-learning-based surrogate models have emerged as a
promising alternative to traditional simulation methods, especially in addressing complex optimization
problems. However, a significant challenge lies in the necessity of numerous high-fidelity training
simulations to construct these deep-learning models, which limits their application to field-scale
problems. To overcome this limitation, we introduce a training procedure that leverages transfer
learning with multi-fidelity training data to construct surrogate models efficiently. The procedure begins
with the pre-training of the surrogate model using a relatively larger amount of data that can be effi-
ciently generated from upscaled coarse-scale models. Subsequently, the model parameters are fine-
tuned with a much smaller set of high-fidelity simulation data. For the cases considered in this study,
this method leads to about a 75% reduction in total computational cost, in comparison with the tradi-
tional training approach, without any sacrifice of prediction accuracy. In addition, a dedicated well-
control embedding model is introduced to the traditional U-Net architecture to improve the surrogate
model's prediction accuracy, which is shown to be particularly effective when dealing with large-scale
reservoir models under time-varying well control parameters. Comprehensive results and analyses are
presented for the prediction of well rates, pressure and saturation states of a 3D synthetic reservoir
system. Finally, the proposed procedure is applied to a field-scale production optimization problem. The
trained surrogate model is shown to provide excellent generalization capabilities during the optimiza-
tion process, in which the final optimized net-present-value is much higher than those from the training
data ranges.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Accurate prediction of subsurface fluid flow is crucial for man-
aging petroleum, natural gas, and groundwater resources. Numer-
ical simulation techniques are often needed to solve subsurface
flow equations due to the complexities of geological models and
multiphase flow physics. However, the computational resources
needed for these simulations can be prohibitive for practical
. Sun).
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applications, particularly when a large number of full-order simu-
lations are needed for certain optimization and data assimilation
tasks. Data-driven surrogatemodeling techniques offer a promising
approach to significantly reducing the time required for repetitive
forward simulations. However, current surrogate modeling
methods often require a large number of flow simulations to pro-
vide the training data, which can be computationally expensive and
limit their use in practice.

In this work, we introduce a novel methodology for constructing
deep-learning-based surrogate models that leverage transfer
learning with multi-fidelity training data. The surrogate models are
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trained based on the widely applied U-Net deep learning network
with several key improvements (Ronneberger et al., 2015). Firstly,
time-varying source/sink terms (i.e.: well controls in this study) are
embedded directly into the U-Net network to better capture the
corresponding effects on reservoir flow dynamics. Secondly, a
model upscaling technique is applied to generate multi-fidelity
reservoir models and associated training data. A fine-tuning pro-
cedure, the typical method of transfer learning, is then proposed to
effectively adjust the model parameters for high-fidelity, or high-
resolution, predictions. For the cases considered in this study, 80%
of the training runs were generated using efficient coarse-scale
models, which led to a roughly 75% reduction in the total compu-
tational cost for constructing the deep-learning model. While
achieving a significant reduction in computational costs, the final
trained model can still provide very accurate dynamic predictions
for field pressure and saturation distributions, as well as well rates
at different time steps.

The construction of accurate deep-learning-based surrogate
models for subsurface flow simulations represents an active area
of research. Once trained with sufficient training data, the surro-
gate models are usually capable of providing very accurate flow
predictions, while achieving a speed-up factor of few hundreds to
few thousands compared with traditional simulators for subse-
quent flow simulations (Zhang K. et al., 2021, 2022; Sun, 2020;
Kim et al., 2021; Zhong et al., 2021; Nwachukwu et al., 2018). Zhu
and Zabaras (2018) introduced the use of a deep convolutional
encoder-decoder network to establish relationships between
permeability fields and key reservoir characteristics, such as fluid
velocity and pressure distribution at the end of the simulation. Mo
et al. (2020) extended the encoder-decoder model with input
parameters incorporating time-step information for predicting
pressure and saturation distributions at different time steps. Tang
et al. (2020, 2021) proposed a R-U-Net architecture, which com-
bines the U-Net model with Long Short-Term Memory (LSTM)
networks. Zhu and Zabaras (2018), Mo et al. (2020), and Tang et al.
(2020) primarily focused on the use of surrogate models for un-
certainty quantification, where the well controls were fixed for all
different model realizations.

Production optimization in reservoir engineering involves
improving the efficiency and profitability of oil and gas extraction
operations by maximizing production rates while minimizing
operational costs (Kumar et al., 2017; Shang et al., 2019; Zhang Y.
et al., 2021). This typically requires the integration of various
physical, geological, and economic factors to make informed de-
cisions about reservoir management. However, traditional pro-
duction optimization processes often require a large number of
numerical simulations, bringing a significant computational chal-
lenge in oilfield development. Deep learning-based surrogate
models can effectively accelerate this process (Jin et al., 2019;Wang
et al., 2024). For the production optimization problem, the surro-
gate model must be able to effectively predict the reservoir state
under time-varying well control conditions.

Jin et al. (2019) introduced an approach in which both perme-
ability and well control serve as input features in the model. Zhang
K. et al. (2021), Zhong et al. (2021), and Xu et al. (2023) developed
similar methods for incorporating well control information. In the
abovementioned work, dynamic well-control inputs are broad-
casted to a feature matrix in which well-control parameters are
non-negative at the matrix coordinates corresponding to well grid
blocks. Hence, the well-control feature matrix is very sparse and
presents challenges for feature extraction with a limited number of
convolutional layers. To better handle well-control input, Kim and
Durlofsky (2021, 2023) presented the use of convolutional
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operations to extract features from geological and well-control
input, which were then fed into a Recurrent Neural Network
(RNN) for dynamic flow prediction. Jin et al. (2020) proposed an
embed-to-control (E2C) framework in which a linear transition
model in the low-dimensional hidden space was utilized to handle
well-control input. Huang et al. (2023) improved the proposed E2C
model by adding a linear transition model to the output layer,
allowing for direct prediction of well rates. All of the above-
mentioned work required a large number, from hundreds to
thousands, of detailed flow simulations to provide the training
data, which can be computationally infeasible for practical
applications.

A promising approach to addressing the requirements of many
high-fidelity simulations is to utilize simulation data generated
from very efficient coarse-scale models. In this study, we investi-
gate the use of multi-fidelity training data, generated from fine-
scale and corresponding upscaled coarse models, to construct
deep-learning surrogate models (Christie, 1996; Chen et al., 2008).
Geneva and Zabaras (2020) and Meng and Karniadakis (2020)
developed composite network structures suitable for training
with multi-fidelity data. They adopted transfer learning techniques
to adjust surrogate model parameters initially trained using low-
fidelity data. Building on these advancements, De et al. (2020)
and Song and Tartakovsky (2022) constructed surrogate models
using multi-fidelity data to solve two-phase flow problems in 2D
Gaussian geomodels. Additionally, Jiang and Durlofsky (2023) have
developed surrogate models for reservoir uncertainty quantifica-
tion. In both the pre-training and fine-tuning phases, the input to
the model is a high-fidelity permeability field, and the output is a
low-fidelity and high-fidelity saturation field, respectively.

In this study, we develop and apply surrogate models for two-
phase oilewater subsurface flow simulations under time-varying
well control within the context of well control production opti-
mization. To handle the well-control input, we developed an
embedding layer that feeds the well control into the latent space
of a traditional U-Net architecture, which was shown to provide
superior performance compared with approaches based on
traditional treatments of broadcasting well-control input to
simulation grid blocks (Jin et al., 2019; Zhang K. et al., 2021; Zhong
et al., 2021; Xu et al., 2023). Therefore, the new deep-learning
network is referred to as E-U-Net. To train E-U-Net with multi-
fidelity data, grid-based upscaling methods were used to
generate coarse-scale models from corresponding high-fidelity
geomodels. Low-fidelity training data was then generated from
these coarse-scale models and used to pre-train the E-U-Net
model parameters. A smaller number of high-fidelity training data
were then used for model fine tuning. The proposed approach can
provide an accurate E-U-Net surrogate model with much less
computational cost.

This paper is organized as follows: In Section 2, we introduce the
governing equations of the oilewater two-phase subsurface flow
problem and reservoir production optimization that is considered
in this study. In Section 3, we provide a brief discussion of the E-U-
Net network structure, highlighting the specific enhancements and
modifications introduced in this study. In addition, model training
with multi-fidelity data is provided. In Section 4, we apply the
surrogate model to a 3D reservoir model, with detailed discussion
on the model accuracy, the effectiveness of using multi-fidelity
data, and the impact of the introduced embedding module for
well-control input. In Section 5, we apply the proposed surrogate
model to a field-scale reservoir model for production optimization.
In Section 6, we summarize the study and provide suggestions for
future work.
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2. Governing equations and reservoir production
optimization

2.1. Governing equations

In this work, we will consider a two-phase subsurface flow
problem. However, we emphasize that the proposed procedure of
constructing deep-learning-based surrogate models can still be
applicable for more complex scenarios, such as three-phase flow
and compositional models. Regarding two-phase flow, the gov-
erning equations for material balance are written as

V ,
�
rjvj

�þ qj þ
v

vt

�
frjSj

�¼0; (1)

where the subscript j denotes the fluid phase (i.e.: j ¼ o for oil phase
and j ¼ w for water phase); rj is the phase density; vj denotes the
Darcy velocity of phase j; qj denotes the source/sink term of phase j;
f is the porosity; and Sj is the saturation of phase j. The equation for
vj is written as

vj ¼ �kkrj
�
Sj
�

mj

�
pj
� �Vpj � rjgVz

�
; (2)

where k is the absolute permeability tensor; krj represents the
relative permeability of phase j; pj is the pressure of phase j; mj is the
viscosity of phase j; g is the gravitational acceleration constant; z is
the depth. In this study, we ignore the capillary pressure between
the two fluid phases, as is common inmany conventional reservoir-
scale simulations, which leads to p ¼ po ¼ pw. Note that krj and mj
are nonlinear functions of saturation and pressure of phase j,
respectively.

In the context of reservoir simulation, the governing equations,
Eqs. (1) and (2), are usually discretized using finite volumemethods
on geomodels, and the resulting nonlinear equations are typically
solved with Newton's method. Define the state vector x ¼ ½p;Sw�,
which contains all the state values on discretized grid blocks, and
let u denote the source/sink terms introduced by injectors and
producers. The material balance equation shown in Eq. (1) can be
written as (see detailed derivation in Aziz (1999))

vAðxÞ
vt

þ FðxÞ þ Q ðx;uÞ ¼ 0; (3)

where A, F, and Q are the accumulation, flux, and source/sink terms,
respectively, which are functions of state vector x and u. Discretize
Eq. (3) in time and space, the fully-implicit formulation's discrete
system can be expressed as

g
�
xnþ1; xn;unþ1

�
¼A

�
xnþ1; xn

�
þ F
�
xnþ1

�
þ Q

�
xnþ1;unþ1

�
;

(4)

where g represents the residual that we aim to reduce to zero; the
superscript n denotes the simulation time step. Newton's method is
used to solve Eq. (4), the Jacobian matrix J is constructed as

J¼ vg
vx

; (5)

then the iteration can be achieved by
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xnþ1¼xn�
�
Jnþ1

��1h
A
�
xnþ1;xn

�
þF
�
xnþ1

�
þQ

�
xnþ1;unþ1

�i
:

(6)

For detailed explanations and derivations of the above equations,
please refer to Aziz (1999) and He et al. (2011).

Let Nc denote the number of grid blocks, Nv denote the number
of primary variables at every grid block, and NT ¼ Nv � Nv denote
the number of total variables. Thenwe have J2RNT�NT . For practical
problems, the dimension of J is usually on the order of millions,
which leads to significant computational resources and time for
each simulation run.

Eqs. (3)e(6) characterize the process of solving the partial dif-
ferential equation for subsurface flow using a full-order simulator,
which can be expressed as calculating the state at time step nþ1
from the state at time step n, written as

xnþ1 ¼ f
�
m; xn;unþ1

�
; (7)

where f ð ,Þ denotes the numerical simulation from the full-order
simulator (i.e.: ECLIPSE used in this study) and m denotes the
static parameters such as the permeability field. As mentioned,
solving Eq. (7) is computationally expensive and time consuming.
In this study, we aim to construct a surrogate model for Eq. (7),
which can be written as

bxnþ1 ¼bf �m; bxn;unþ1
�
; (8)

where bf ð ,Þ denotes the surrogate model; bxn and bxnþ1 are the
predicted state vectors from the surrogate model. Note that the
same initial conditions are used for the full-order simulator and the

surrogate model, therefore we have bx0 ¼ x0. In Section 3, we will
describe the method used to construct this surrogate model as well
as the use of multi-fidelity simulation data for model training.
2.2. Production optimization using particle swarm optimization

Particle Swarm Optimization (PSO) is a heuristic optimization
technique inspired by the social behavior of birds flocking or fish
schooling. It is widely employed to solve optimization problems
where the objective function is nonlinear, multidimensional, and
lacks an explicit mathematical formulation (Poli et al., 2007; Du
et al., 2023). In the context of production optimization, PSO can
be utilized to optimize well control parameters, such as well rates
and bottom-hole pressure, over time to maximize recovery or Net
Present Value (NPV). In this work, we have selected NPV as the
objective function, and it is calculated as follows:

NPV¼
XNt

n¼1

(
Dtn

ð1þ bÞ tn
365

 XNo

i¼1

roqno �
XNo

i¼1

cpwqnpw�
XNw

i¼1

ciwq
n
iw

!)

�
XNo

i¼1

co �
XNw

i¼1

cw;

(9)

where Nt is the total number of time steps; Dtn is the time interval
for each time step; b is the discount rate; tn is the cumulative
production time; No and Nw are the number of producers and in-
jectors; ro is the price of crude oil; cpw is the cost of handling
produced water; ciw is the cost of water injection; qno, q

n
pw, and qniw

are the rate of oil production, water production, andwater injection
at time step n, respectively; co and cw are the drilling and
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completion costs for producers and injectors, respectively.
The rationale for choosing PSO for production optimization lies

in its ability to effectively search large, complex, and multidimen-
sional solution spaces. Traditional optimization methods, such as
gradient-based techniques, often struggle with oil reservoir models
due to their nonlinearity, high dimensionality, and the absence of
smooth, continuous gradients (Afshar, 2013; An et al., 2022). PSO, as
a population-based global optimization algorithm, does not require
gradient information and can efficiently handle the uncertainty and
nonlinearity inherent in reservoirmodeling and optimization tasks.
Note that the choice of optimization algorithm is not the key
contribution of this study; hence, only a brief description of PSO
will be provided here. For a detailed description of PSO and other
more advanced optimization algorithms, please refer to
Kochenderfer (2019).

In heuristic optimization techniques, the core lies in the update
logic for the next generation. For PSO, the velocity of each particle
in the next generation is updated as follows:

vkþ1
i ¼w , vki þ c1 , r1 ,

�
pbesti � xki

�
þ c2 , r2,

�
gbest � xki

�
; (10)

where vkþ1
i is the updated velocity of particle i at iteration kþ 1; vki

is the current velocity;w is inertia weight; c1 and c2 are coefficients
of cognitive and social, respectively; r1 and r2 are random numbers
between 0 and 1; pbesti is the personal best position of particle i;

gbest is the global best position across all particles; xki is the current
position of particle i at iteration k. In this work, we set w ¼ 0:7,
c1 ¼ c2 ¼ 2:05. The position updated as follows:

xkþ1
i ¼ xki þ vkþ1

i ; (11)

where xkþ1
i is the updated position of particle i at iteration kþ 1.

Details of the production optimization procedure use PSO are
shown in Table 1.
3. Model architecture and training methods

In this section, we will first describe the E-U-Net architecture
Table 1
Pseudo-code for production optimization using PSO.

Algorithm 1: Production optimization procedure use PSO

NPVbest ¼ 0
for i ¼ 1 to Ni

Initialize v0i , x
0
i

Set pbesti ¼ x0i and calculate NPVðpbesti Þ as Eq. (9)
if NPVðpbesti Þ>NPVbest

gbest ¼ pbesti

NPVbest ¼ NPVðpbesti Þ
end for
for k ¼ 1 to Nk
for i ¼ 1 to Ni

Update the vki and xki as Eqs. (10) and (11)

Calculate NPVðxki Þ as Eq. (9) and evaluate particle i

if NPVðxki Þ >NPVðpbesti Þ
pbesti ¼ xi

if NPVðpbesti Þ>NPVbest

gbest ¼ pbesti

NPVbest ¼ NPVðpbesti Þ
end for

end for

return NPVbest, gbest
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and the specific improvements we introduced, then discuss the
inputs and outputs of the E-U-Net model. Subsequently, we will
describe the use of multi-fidelity data with transfer learning to
expedite E-U-Net model training. Finally, we will introduce the loss
function used in the model training progress.

3.1. E-U-net architecture

In this research, we employ the U-Net architecture, as originally
developed by Ronneberger et al. (2015). This architecture repre-
sents a modified encoder-decoder framework fundamentally based
on convolutional neural networks. The adaptability of U-Net has
been demonstrated in its recent applications for constructing sur-
rogate models for subsurface flow problems (Zhu and Zabaras,
2018; Sun, 2020). The U-Net architecture comprises encoding and
decoding modules, which can effectively capture the spatial fea-
tures of input information and provide predictions for matrix-like
output targets.

The schematic diagram of the U-Net architecture is shown in
Fig. 1. The encoding net involves a sequence of convolutional and
pooling layers. Convolutional layers are used to extract spatial hi-
erarchies of features from the input features, while pooling layers
reduce the spatial dimensions, widen the field of view, and
compress the feature representation. The decoding net consists of
upsampling layers that increase the resolution of the processed
features. This is typically achieved through transposed convolu-
tions or up-scaling operations. Each upsampling step is followed by
a convolutional layer to refine the feature maps, enabling the
network to reconstruct more detailed spatial information from the
compressed feature encoding. The concatenation operation is a
critical component of the U-Net architecture. It involves merging
the feature maps from the corresponding encoding pathway with
the upsampling feature maps in the decoding pathway. This oper-
ation provides the decoder with additional context, helping to
reconstruct features more precisely in the output map. For more
detailed discussions of U-Net, please refer to Ronneberger et al.
(2015).

In this study, we introduce an enhanced version of this network,
termed Embedding U-Net (E-U-Net), which includes an embedding
module to handle time-series well-control input. The detailed ar-
chitecture of E-U-Net is illustrated in Fig. 2. In the E-U-Net archi-
tecture, the input features go through the encoding module to a
latent space. Denote the latent-space input matrix as
E2Rxe�ye�ze�ne , where xe � ye � ze represents feature dimensions
and ne denotes the number of channels. For a reservoir simulation
case that contains nw wells, the well-control input (similar to
boundary conditions) at a specific time step can be assembled into a
vector, expressed as u2R1�nw . The well control is input to the
model in two ways: broadcasted input and embedding module. A
dedicated embedding module, represented by the gray dashed box
in Fig. 2, is introduced to better handle the incorporation of well-
control input features. Firstly, a repeat layer is used to expand
well-control input into a feature map of size xe � ye � ze � nw.
Subsequently, a convolutional layer is applied, with the number of
channels changed from nw to nu. The corresponding output feature

map can then be denoted as bunþ1
2Rxe�ye�ze�nu .

After merging E and bunþ1, the decoding module transforms the
hidden feature tensor into the target tensor, producing the final
output: the state predictions for the next time step. Furthermore,
within the embeddingmodule, additional dense layers are included
to calculate the target flow rates at all wells (i.e.: producers and
injectors). We use Global Average Pooling (GAP) to convert the
high-dimensional features in the latent space into a 1D vector. GAP
computes the average value of each feature map across its spatial



Fig. 1. Schematic diagram of the original 3D U-Net architecture.
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dimensions, effectively summarizing spatial information into a
single value per featuremap. This approach reduces dimensionality
while retaining essential global information (Lin, 2013). Then, three
layers of fully connected neural networks are used to predict the

well rates at the next time step, denoted as bqnþ1. A detailed
description of the E-U-Net architecture is shown in Table 2. For 3D
Fig. 2. Schematic diagram of the proposed 3
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pooling, all pooling operations utilize a 2� 2� 1 kernel to effec-
tively preserve vertical information. The nx, ny, and nz represent the
dimension of the input feature and the details of the model input
will be described in Section 3.2.

In previous studies, the well-control input was often broad-
casted into a high-dimensional feature tensor, with non-zero values
D E-U-Net neural network architecture.



Table 2
Detailed architecture of the proposed 3D E-U-Net.

Layers Output size

Input 1 ðnx;ny;nz;4Þ
conv, 32 filters of size 3� 3� 3, strides 1, pooling ðnx =2;ny =2;nz;32Þ
conv, 64 filters of size 3� 3� 3, strides 1, pooling ðnx =4;ny =4;nz;64Þ
conv, 128 filters of size 3� 3� 3, strides 1, pooling ðnx =8;ny =8;nz;128Þ
conv, 256 filters of size 3� 3� 3, strides 1 E ðnx =8;ny =8;nz;256Þ
Input 2 (1;nw)
Repeat ðnx =8;ny =8;nz;nwÞ
conv, nu filters of size 3� 3� 3, strides 1 ðnx =8;ny =8;nz;nuÞ
Concatenate E ðnx =8;ny =8;nz;256 þ nuÞ
Layers Output size Layers Output

size

conv, 256 filters of size 3� 3� 3, strides
1

ðnx =8;ny =8;nz;
256Þ

GAP 256þ nu

decov, 128 filters of size 2� 2� 1,
strides 2

ðnx =8;ny =8;nz;
128Þ

Dense 128

decov, 64 filters of size 2� 2� 1, strides
2

ðnx =4;ny =4;nz;
64Þ

Dense 128

decov, 32 filters of size 2� 2� 1, strides
2

ðnx =2;ny =2;nz;
32Þ

Output
2

ð1;nqÞ

Output 1 ðnx;ny;nz;2Þ
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at indices corresponding to well locations (Jin et al., 2019; Zhang K.
et al., 2021; Zhong et al., 2021; Xu et al., 2023). Such treatment leads
to a very sparse well-control input matrix for the constructed sur-
rogate model, especially when the reservoir model is of high-
resolution (or high-fidelity). Due to the finite number of CNN
layers contained in U-Net, the U-Net model is less affected by the
values of the specific grids of the input matrix and cannot effec-
tively propagate the impact of well-control input to the entire
simulation field at the next time step, which is critical for accurate
pressure and saturation forecasts. Therefore, integrating the pro-
vided embedding module after the encoding net represents an
important improvement in enabling the global impact of well
control on the output. As we will see through the numerical tests
presented in Section 4.2, the embedding module helps improve the
prediction accuracy of the trained surrogate model, especially
when working with high-fidelity cases.
3.2. Model input and output

In this study, the surrogate model takes the static and dynamic
reservoir parameters at the current time step as input and then
predicts the reservoir's state at the next time step, as represented
by Eq. (8). Consider a 3D reservoir model containing nx� ny� nz
grid blocks and nw wells (including both producers and injectors),
surrogate model inputs and outputs are shown in Table 3. From
Table 3, we can see that well-control inputs are fed into the E-U-Net
through a broadcasted tensor matrix, as in previous studies (Jin
et al., 2019), as well as the discussed embedding module in
Table 3
Inputs and outputs of the 3D E-U-Net.

Inputs Dimension

Permeability field k nx � ny � nz � 1

Well control unþ1 Broadcasted input nx � ny � nz � 1
Embedding module 1� nw

Reservoir state xn ¼ ½pn;Snw� nx � ny � nz � 2

Outputs Dimension

Reservoir state bxnþ1 ¼ ½bpnþ1
;bSnþ1

w � nx � ny � nz � 2

Well rates bqnþ1 1� nq
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Section 3.1. Considering the above inputs and outputs, the surro-
gate model prediction equation during the training phase can be
expressed as

bxnþ1
; bqnþ1 ¼bf �k;unþ1; xn; q

�
; (12)

where q is the adjustable parameter within surrogate model. Note
here that the well rates are also directly predicted as part of the
surrogate model output, in comparison with Eq. (8).

Similar to solving partial differential equations with a full-order
simulator, the E-U-Net learns mapping between inputs at the cur-
rent time step and target outputs at the next time step by contin-
uously updating q during the training process. Fig. 3 illustrates the
predictive process implemented by the surrogate model once
trained. At the initial time step (n ¼ 0), the initial state, x0 and k, of
the reservoir is known. With a specified well control u1, trained

model computes bq1 and bx1, then bx1 acts as the input for the next
time step. This iterative process facilitates a sequential character-
ization of the pressure and saturation distributions within the
reservoir, adapting dynamically to variations in well control sce-
narios over time.
3.3. Model training with multi-fidelity data

Traditional surrogate models, as demonstrated in Tang et al.
(2020) and Kim et al. (2021), demand extensive high-fidelity sim-
ulations, often totaling thousands of runs. This is computationally
intensive, especially for models with millions of grids. In contrast,
our approach leverages transfer learning to address this challenge
more efficiently. Transfer learning allows us to transfer knowledge
from one task to another, thereby reducing the need for extensive
simulations (Pan and Yang, 2009). Specifically, in our case, the
source task involves training a surrogate model with low-fidelity
data, which is computationally inexpensive but less accurate. The
E-U-Net model is initially pre-trained to predict reservoir state
variables and well rates for coarse-scale models. The target task, in
turn, involves fine-tuning this pre-trained surrogate model with a
smaller, more accurate set of high-fidelity data, thereby enhancing
themodel's predictive accuracy for fine-scale reservoir simulations.
By combining both low-fidelity and high-fidelity data, transfer
learning enables us to build a model that generalizes well to fine-
scale reservoir states, significantly reducing the computational
cost of model construction while maintaining high accuracy.

Specifically, the training methodology for E-U-Net using multi-
fidelity data is depicted in Fig. 4. The first step involves training
E-U-Net parameters using low-fidelity data, with the prediction
equation written as

bxnþ1
l ; bqnþ1

l ¼bf �kl;u
nþ1
l ; xnl ; ql

�
; (13)

where the subscript l stands for low-fidelity; ql represents the
tunable E-U-Net model parameters. Note that the inputs and out-
puts in Eq. (13) are all related to coarse-scale reservoir models.
During the pre-training process, we employ Nlf low-fidelity runs,
with each run consisting of Nt time steps. Given that the E-U-Net is
designed as a direct mapping of data at previous and next time
steps, this results in the creation of Nlf � Nt training samples. These
samples are then utilized to train the pre-trainedmodel parameters
ql. After pre-training, we obtained a pre-trained model that can be
used to predict system states for coarse-scale models.

Then, the pre-trained model is fine-tuned using high-fidelity
data, with the prediction equation written as



Fig. 3. Schematic diagram of the sequential prediction process of the trained surrogate model. The outputs at the time step n serve as part of the inputs for the time step nþ 1.
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bxnþ1
h ; bqnþ1

h ¼bf �kh;u
nþ1
h ; xnh; qh

�
(14)

where the subscript h denotes high-fidelity. During the fine-tuning
process, we use Nft high-fidelity models, and similar to the pre-
training process, Nft � Nt training samples are created. After the
fine-tuning process, we can obtain updated model parameters qh
Fig. 4. E-U-Net model training through a two-step process with multi-fidelity trainin

1742
that are suitable for generating predictions for fine-scale models.
We emphasize that the proposed fine-tuning strategy is a simple
but effective method of transfer learning, as the E-U-Net is built on
a convolutional neural network framework, where the surrogate
model parameters primarily consist of fixed-size kernel operations
that are invariant w.r.t the dimensions of input and output
matrices. This means the trainable parameters represented by qh
g data. Here, LF stands for low-fidelity data and HF stands for high-fidelity data.
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have the same dimension as those of ql. The trained kernel pa-
rameters from low-fidelity training data serve as good initial esti-
mates for training the final high-fidelity E-U-Net surrogate model.
In this paper, both the pre-training and fine-tuning processes
involved model training for 300 epochs, and the amount of high
and low-fidelity data used in pre-training and fine-tuning is
described in detail in Section 4.3.

During the training process, the choice of the loss function is
very important. In our model, the losses during the training process
contain saturation loss (LS), pressure loss (Lp), and well rate loss
(Lq). These losses are denoted as

LS ¼
1

Nrun

1
Nt

XNrun

i¼1

XNt

n¼1

��Sni � bSni ��22; (15)

Lp ¼ 1
Nrun

1
Nt

XNrun

i¼1

XNt

n¼1

��pni � bpn
i

��2
2; (16)

Lq ¼ 1
Nrun

1
Nt

XNrun

i¼1

XNt

n¼1

��qni � bqn
i

��2
2; (17)

where Nrun is the total number of simulation runs to generate the
training samples; Nt is the total number of time steps for each
simulation. The total loss function used in this study is

LT ¼ lLS þ bLp þ dLq; (18)

where the hyperparameters l, b, and d are specified weights for
each loss component. All the training samples are preprocessed
using the standard min-max normalization technique, and the
three hyperparameters l, b, and d were all set to 0.33 for cases
considered in this study. The training and evaluation processes
were performed on a computational environment featuring a 13th
Gen Intel Core i9-13900K CPU and an NVIDIA GeForce RTX 4070 Ti
GPU.

To generate multi-fidelity training data, a simple grid-based
mean upscaling technique is applied (Christie, 1996; Chen et al.,
2008). Essentially, the fine grids are grouped into a number of
coarse grid cells, with coarse-scale properties obtained by corre-
sponding average fine-scale properties. We perform upscaling on
heterogeneous permeability fields. Fig. 5 illustrates the distribution
of permeability (ln k) after upscaling, calculated by
Fig. 5. Comparison of fine-scale and coarse-scale permea
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kcoarseði; j; kÞ¼ 1
r2
Xr�1

a¼0

Xr�1

b¼0

kfineðriþ a; rjþ b; kÞ; (19)

where kcoarse and kfine are the coarse-scale and fine-scale perme-
ability fields, respectively; r is the upscaling factor; and i, j, and k are
the grid coordinates of the coarse-scale model, respectively. Note
that more advanced upscaling methods can also be utilized, such as
those upscaling algorithms considering single-phase or multi-
phase equations (Li et al., 2014; Li and Durlofsky, 2016). The use
of more advanced upscaling methods can potentially improve the
accuracy of the E-U-Net surrogate model when trained with multi-
fidelity data. Also note that the proposed two-step training pro-
cedure shown in Fig. 4 can be easily extended to a multi-step
training procedure with multiple levels of upscaling for further
reduction of computational cost.

The trained surrogate model can replace the traditional nu-
merical simulation process by efficiently predicting the reservoir
state and well rates under different well control scenarios.
Throughout the production optimization process, the surrogate
model enables fast NPV predictions, shown in Eq. (9), under varying
well control conditions. It is important to emphasize that only the
trained surrogate model is used to calculate the NPV during pro-
duction optimization, and themulti-fidelity data is solely employed
during the model training procedure. The workflow for construct-
ing the surrogate model using multi-fidelity data and applying it to
production optimization is illustrated in Fig. 6.
4. Numerical tests

In this section, we first introduce the problem setup. Subse-
quently, we discuss the effect of the well-control embedding
module on model accuracy. The sensitivity of model fine-tuning
using different numbers of high-fidelity simulations is also pre-
sented. Finally, we analyze the computational costs associated with
our proposed procedure for building surrogate models.
4.1. Problem setup

In this section, we consider a 3D oilewater subsurface flow
problem. The fine-scale simulation model is represented on 200�
200� 5 Cartesian grid blocks, with each block of size 5 m� 5 m�
3 m. The coarse-scale model is represented on 40� 40� 5 grid
blocks, with an upscaled factor of five. The permeability field is
generated by the sequential Gaussian method (Müller et al., 2020),
with a mean of the natural logarithmic values of permeability (ln k)
bility fields before and after simple model upscaling.



Fig. 6. Workflow for training a surrogate model using multi-fidelity data and applying it to production optimization.

J.-W. Cui, W.-Y. Sun, H. Jeong et al. Petroleum Science 22 (2025) 1736e1756
of 5 mD and a standard deviation of ln k to be 1.6. The permeability
field and well locations are illustrated in Fig. 7, where the prefixes I
and P denote an injector and a producer, respectively.

The oilewater relative permeability curves used in this case are
shown in Fig. 8, which are calculated based on standard Corey
functions, written as

krw ¼ ðkrwÞSorw
�

Sw � Swc

1� Swc � Sorw

�nw

; (20)

kro ¼ ðkroÞSwc

�
1� Sw � Sorw
1� Swc � Sorw

�no

; (21)

where the parameters are as follows: Sorw ¼ 0:2, Swc ¼ 0:2,
ðkrwÞSorw ¼ 1, ðkroÞSwc

¼ 1, nw ¼ 1:5, no ¼ 3. Please refer to Sun et al.
(2017) for a detailed definition of each parameter in Eqs. (20) and
(21).

Initial oil and water saturations are set to 0.8 and 0.2, respec-
tively. Reservoir porosity is set to a constant value of 0.15. The initial
reservoir pressure is 400 bar. The range of injection bottom-hole
pressure (BHP) is set between 550 and 650 bar, while the produc-
tion well BHPs are maintained within a range of 250e350 bar. BHP
controls in all wells are adjusted every 60 days for a total of 20 time
steps. Hence, the total simulation time is 1200 days. Fig. 9 shows
the BHP controls for one case, in which the values were randomly
sampled for each time step within specified ranges.
Fig. 7. Distribution of permeability (in natural logarithmic scale) and well locations (I
and P stand for injector and producer, respectively).
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4.2. Impact of well-control embedding module

In this section, we discuss the impact of adding the embedding
module for well-control input by setting different values for nu,
which is the channel number for the well-control feature after
convolution (shown in Table 2). A total of 300 training runs and 100
testing runs were performed by varying the well controls randomly
within the specified ranges that are provided in Section 4.1. For each
training or testing run, the pressure/saturation states and well rates
were recorded for 20 time steps, with each time step of 60 days.

We will evaluate the impact of the well-control embedding
module when constructing surrogate models for the low-fidelity
model (of shapes 40� 40� 5) and the high-fidelity model (of
shapes 200� 200� 5), respectively. The goal here is to present the
impact of adding dedicated treatments for time-series well-control
input when building surrogate models for high-fidelity and low-
fidelity model scenarios. For each scenario, we generated two
surrogate models: one without the embedding module, U-Net (i.e.:
nu ¼ 0) and one with the embedding module, E-U-Net (i.e.: nu ¼
32). Note that the surrogatemodels herewere trained using single-
fidelity data, results using multi-fidelity data will be presented in
Section 4.3.
Fig. 8. Oilewater relative permeability curves.



Fig. 9. Well bottom-hole pressure (BHP) controls for injector and producers.
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Fig. 10 shows the predicted water saturation and pressure states
at the last time step for one randomly selected test run w.r.t the
low-fidelity model. Fig. 10(a) shows the comparison of the water
saturation results. The different rows stand for results from the
surrogate model based on the U-Net and E-U-Net models, respec-
tively. The different columns present the result of the full-order
simulation, the surrogate model, and the error of both, respec-
tively. It is clear that improved predictions can be obtained for a
trained surrogate model using E-U-Net, as shown in the third
Fig. 10. Water saturation and pressure at the last time step of the simulation for the low-fi
and the surrogate model, respectively. The third column shows the absolute prediction erro
surrogate model using U-Net (nu ¼ 0), and the second row is for results with the propose
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column. The maximum saturation prediction errors were reduced
from roughly 0.06 to 0.03 with the introduction of the well-control
embedding module. Fig. 10(b) shows the results comparison for
corresponding pressure predictions. Again, we can clearly see that
the surrogate model built using E-U-Net presents improved pres-
sure predictions. The overall prediction errors are very small and
span from 0 to 4 bar, which are expected due to the small model
size.

Fig. 11 shows the comparison results w.r.t a high-fidelity model
delity model. The first two columns present predictions from the full-order simulation
r, and the last column is the error histogram. The first row stands for results from the
d E-U-Net (nu ¼ 32).



Fig. 11. Water saturation and pressure at the last time step of the simulation for the high-fidelity model. The figure layout is the same as that in Fig. 10.
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corresponding to the coarsened model used in Fig. 10. The figure
layout is the same as that in Fig. 10. Here we can clearly see that the
trained surrogate model using E-U-Net provides superior results in
comparison with U-Net (third and fourth columns in Fig. 11(a) and
Fig. 12. Box plots of prediction errors for water saturation and pressure fields from the tra
module (nu). Note that nu ¼ 0 (filled in yellow) means the surrogate model is trained using U
line), P75 (top of the box), and P90 (top line) results. The results here are for the low-fidel
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(b)). For example, the maximum error for water saturation pre-
diction reduces from about 0.3 to 0.1, and the maximum error for
pressure prediction reduces from about 80 to 25 bar. In addition,
comparing the results in Figs. 10 and 11, we can see that the
ined surrogate model with different channel numbers of the well-control embedding
-Net. Each box represents the P10 (bottom line), P25 (bottom of the box), P50 (middle
ity model (40� 40� 5 grid blocks).



Table 4
Number of training runs used by different models.

Model Training data High-fidelity runs Low-fidelity runs

FT (Nft) Multi-fidelity Nft 300
HF (Nhf) Single-fidelity Nhf e
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prediction errors from a trained surrogate increase when dealing
with a higher-fidelity model. Such observations indicate that it
tends to bemore challenging to build accurate deep-learning-based
surrogate models for fine-scale simulation cases.

Another important observation is that, by comparing the results
shown in Figs. 10 and 11, the E-U-Net model provides larger accu-
racy improvements, compared with the results from the U-Net
model, when dealing with the high-fidelitymodel. For example, the
ranges of prediction error histograms of pressure are similar be-
tween the U-Net and E-U-Net models, as shown in the fourth col-
umn of Fig. 10(b) for the low-fidelity case, while the corresponding
reduction of the maximum error is from about 80 to 25 bar for the
high-fidelity case, as shown in the fourth column of Fig. 11(b).
Similar results are observed regarding saturation predictions. These
observations further demonstrate the importance of having a
specific embedding module to handle time-series well-control
input, as mentioned in Section 3.1.

Figs. 10 and 11 show comparison results for one fine-scale case
and the corresponding coarse-scale case. Here we will present
statistics of the comparison results w.r.t all 100 randomly generated
test runs, which are not included in any of the training runs. The
absolute errors between the true predictions and surrogate-model
predictions are calculated for both pressure and saturation fields,
written as

dS;ni;j ¼
			Sni;j � bSni;j			; (22)

dp;ni;j ¼
			pni;j � bpn

i;j

			; (23)

where dS;ni;j and dp;ni;j are the absolute error between true and

surrogate-model results for the test run i, grid block j, and time step
n. For the problem considered here, we have i ¼ 1;2; :::;100, n ¼ 1;
2;:::;20, and j ¼ 1;2;:::;Nc. For the fine-scale test case, we have Nc ¼
200� 200� 5 ¼ 200000. For the corresponding coarse-scale test
case, we have Nc ¼ 40� 40� 5 ¼ 8000.

Fig. 12 presents the error statistics, in the form of box plots, for
water saturation and pressure predictions for the low-fidelity
model from the trained E-U-Net model with different channel
numbers of the well-control embedding module (nu in Table 2).
Each box represents the P10 (bottom line), P25 (bottom of the box),
Fig. 13. Box plots of prediction errors regarding the high-fidelity model (200 � 200 �
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P50 (middle line), P75 (top of the box), and P90 (top line) of
calculated errors in Eq. (22) or Eq. (23). Fig. 13 presents the error
statistics regarding the high-fidelity model. Comparing Figs. 12 and
13, it is clear that the prediction errors for both saturation and
pressure fields are systematically larger when dealing with high-
fidelity models, though the overall errors are quite small for E-U-
Net predictions (e.g.: prediction errors are generally below 0.02 for
saturation fields and below 3 bar for pressure fields).

From Figs. 12 and 13, we can again see that the E-U-Net model
(nu ¼ 0) clearly provides more accurate predictions, compared
with the U-Netmodel results where nu ¼ 0, especially for the high-
fidelity model. These results demonstrate the effectiveness of
adding a dedicated well-control embedding module. Based on the
numerical results presented in Figs. 12 and 13, we chose nu ¼ 32 as
the optimal hyperparameter number and will use this setting for
the following sections.

4.3. Transfer learning with multi-fidelity data

In this section, we discuss the prediction accuracy of surrogate
models constructed using transfer learning combined with multi-
fidelity data. We compare the prediction accuracy of surrogate
models constructed using multi-fidelity data with those con-
structed using only high-fidelity data. Table 4 shows the number of
training runs used to construct the surrogatemodels FT (Nft) and HF
(Nhf).

From Section 4.2, we can see that when the model is trained
with single-fidelity data, a high prediction accuracy can be ach-
ieved with 300 training runs. Therefore, the number of low-fidelity
runs used in pre-training is set to 300. The subsequent methods of
constructing surrogate models using multi-fidelity all use 300 low-
fidelity runs to pre-train the model. In the sections below, HF (Nhf)
represents a surrogate model that is trained with Nhf single-high-
fidelity runs, and FT (Nft) represents a surrogate model that is
trained with Nft high-fidelity runs and 300 low-fidelity runs.
5 grid blocks). The colors and lines here have the same meanings as in Fig. 12.



Fig. 14. The evolution of training and validation losses for different models. Here, the FT (50) model used 50 high-fidelity and 300 low-fidelity training runs, while the HF (70) model
used only 70 high-fidelity training runs.

Table 5
Comparative analysis of time consumption in surrogate-model construction using
single-high-fidelity and multi-fidelity data.

Time consumption, h

HF (70) HF (300) FT (50)

Data generation 11.81 50.62 12.48 (4.05 þ 8.43)
Training 2.73 10.42 0.93
Fine-tuning e e 1.22
Total 14.54 61.04 14.63
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Fig. 14 shows the training and validation loss evolutions while
training FT (50) and HF (70). Note that the time consumed by 300
low-fidelity model simulations is close to the time consumed by 20
high-fidelity model simulations, so we use HF (70) as the com-
parison model. The detailed time consumption of surrogate model
construction will be shown in Table 5. At each epoch, the current
minimum loss values are presented. For model training, the
learning rate was set to 0.0001, the batch size was 10, and the
Adaptive Moment Estimation (Adam) algorithm was used for
network optimization (Kingma, 2014). Here we can clearly see that
the results of FT (50) show much faster convergence and smaller
convergence loss compared to those of HF (70). The validation loss
reaches a final convergence value of approximately 10�5 for FT (50),
Fig. 15. Well control setti
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which is almost 10 times smaller than that for HF (70). The com-
parison results demonstrate the effectiveness of using computa-
tionally efficient low-fidelity runs for E-U-Net model pre-training.

Fig.15 presents the randomly generatedwell control parameters
used in a testing run, while Fig. 16 illustrates the predicted water
saturation and pressure states at various selected time steps during
this run. Fig. 16(a) shows the comparison results of the water
saturation prediction. It is clear that FT (50) presents significantly
improved saturation prediction than HF (70). The maximum error
for water saturation prediction reduces from about 0.18 to 0.07,
representing a reduction of nearly 60%. Fig. 16(b) shows the com-
parison of the corresponding pressure predictions. Again, we can
clearly see that better predictions can be obtained from FT (50) than
those from HF (70). The maximum of the error for pressure pre-
diction reduces from about 65 to 25 bar, resulting in a reduction of
prediction error by nearly 60%.

Fig. 17 shows the predictive accuracy of the well rate at each
time step. It can be observed that FT (50) is more accurate than HF
(70) in predicting the well rate at each time step. The rate predicted
of FT (50) can be well matched with the results of full-order sim-
ulations, whereas HF (70) has a large prediction error in several
data points. We emphasize that accurate prediction of the well
rates at each time step is critical for the use of surrogate models for
field development optimization.
ng for a testing run.



Fig. 16. Prediction of HF (70) and FT (50) surrogate models on water saturation and pressure at selected time steps. For each subplot, the first row shows the results of full-order
simulation, the second and third rows show the prediction errors of HF (70) and FT (50), respectively. The first three columns indicate the results at 360, 720, and 1080 days,
respectively, and the last column displays the histogram of the distribution of prediction errors for all three time steps shown.
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Based on the analysis above, it is apparent that FT (50) is able to
accurately predict the pressure, water saturation, and well rate at
each time step under time-varying well control conditions with a
small number of high-fidelity training runs. To further discuss the
predictive capabilities of the fine-tuned model, we will present
statistics on the prediction errors after fine-tuning with varying
numbers of high-fidelity runs. We will provide statistics on the
comparison results w.r.t all 100 randomly generated test cases. The
prediction errors for water saturation and pressure are calculated in
the same manner as described in Eqs. (22) and (23). The well rate
errors are calculated in the same way:
1749
dq;ni;j ¼
			qni;j � bqni;j			; (24)

where dq;ni;j is the absolute error between true and surrogate-model

rates for the test run i, well rate j, and time step n. For the problem
considered here, we have i ¼ 1;2;:::;100, n ¼ 1;2;:::;20, and j ¼ 1;2;
:::;nq. For the test case, we have one injector and three producers, so
nq ¼ 1� 1þ 3� 2 ¼ 7.

Figs. 18 and 19 show the error statistics, in the form of box plots,
for water saturation, pressure, and well rate for different surrogate
models. The lines here have the same meanings as in Fig. 12. HF



Fig. 17. Well rate predictions of surrogate models FT (50) and HF (70). The black line represents true results obtained from full-order reference simulation, the green and purple
dashed lines are results from FT (50) and HF (70), respectively.
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(Nhf) and FT (Nft) here have the same meanings as in Table 4. The
models trained with single-fidelity data are filled in yellow and
those trained with multi-fidelity data are filled in blue.

From Figs. 18 and 19, we can see that the prediction errors for
water saturation, pressure, and well rate gradually decrease as Nft
increases, approaching the prediction results of HF (300). In the
case of water saturation prediction, as shown in Fig. 18(a), HF (70)
has a median error of 0.0042, when Nft � 50, the median error of FT
(Nft) stabilizes at 0.0011 and approaches the prediction results of HF
(300) at 0.0009. In terms of pressure prediction, as shown in
Fig. 18(b), the prediction error reduces substantially when
comparing FT (5) to HF (70), which demonstrates the effectiveness
of the proposed two-step training procedure. In addition, for the
surrogate model FT (Nft), the pressure prediction errors stabilize
after Nft ¼ 50 with a median error of 0.73 bar and are close to those
from using a large number of high-fidelity runs for training, i.e.: HF
(300) with a median error of 0.51 bar.

Similar observations are shown in Fig. 19 for well rate pre-
dictions: FT (5) shows clear improvements compared to the results
1750
of HF (70), which has a median error of 8.52 m3/day. With only 50
high-fidelity training runs, the median error of the FT (50) model is
1.92 m3/day, which is similar to the error level of the HF (300)
model at 1.86 m3/day. Note that each high-fidelity run here is much
more expensive than the corresponding low-fidelity run.

We now present statistics on the time required to construct the
surrogate models HF (300) and FT (50), which have similar levels of
prediction accuracy as shown in Figs. 18 and 19. The time of the HF
(70) model, which was used as a comparison model, was also
estimated. Table 5 shows the time required for building models
using single-high-fidelity data or multi-fidelity data. The compu-
tational time for the entire model construction process primarily
consists of two parts: data generation and model training. Each
high-fidelity model simulation takes about 607.4 s, while the low-
fidelity model simulation takes about 48.6 s. Firstly, we can see that
HF (70) and FT (50) have similar model construction times of about
14.5 h. Then, the total data generation time was 50.62 and 12.48 h
for HF (300) and FT (50), respectively, representing a roughly 75%
reduction in data generation time for FT (50). For model training,



Fig. 18. Box plots of water saturation and pressure prediction errors for different surrogate models. Here HF (Nhf) and FT (Nft) stand for models trained using different numbers of
high-fidelity and low-fidelity training runs, as defined in Table 4.

Fig. 19. Box plots of well rate prediction errors for different surrogate models. The
colors and notations here have the same meanings as in Fig. 18.

Fig. 20. Distribution of permeability and well locations in the fine-scale and coarse-
scale reservoir models.
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HF (300) took 10.42 h, while FT (50) took 0.93 h for training on low-
fidelity data and 1.22 h for fine-tuning using a smaller number of
high-fidelity data. In total, the training of HF (300) and FT (50)
surrogate models took 61.04 and 14.63 h, respectively. Therefore,
for the case considered here, a total reduction of 76% in computa-
tional time can be achieved without sacrificing prediction accuracy
using our proposed approach that utilizes computationally inex-
pensive low-fidelity data for training instead of the entire high-
fidelity data.
5. Field application

In this section, we will apply the proposed E-U-Net surrogate
model for production optimization of the SAIGUP reservoir
(Manzocchi et al., 2008; Matthews et al., 2008). Fig. 20 depicts the
distribution of lnk and well location (in white bars) for the fine-
scale and corresponding coarse-scale reservoir models. The
SAIGUP model has a grid size of 120 � 40 � 20, with 75 m in the x
and y directions and 4 m in the z direction. The coarse-scale
reservoir model has a grid size of 60 � 20 � 20, with 150 m in
the x and y directions and 4 m in the z direction. The reservoir
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contains both oil and water phases, with 10 water injectors and 16
producers. The initial reservoir pressure was 250 bar. For a detailed
description of the SAIGUP reservoir model, please refer to
Manzocchi et al. (2008). For the case considered here, the producer
BHP range is set between 180 and 230 bar, while the injector BHP
range is between 500 and 700 bar. BHP controls in all wells are
adjusted every 2 years, for a total of 10 time steps. The surrogate
model was trained based on 300 low-fidelity and 50 high-fidelity
training runs. For testing, a total of 100 high-fidelity runs, that
were not included in the training dataset were used. For the
training and test runs, the BHP controls were sampled based on a
uniform distribution between the specified ranges for each time
step.



Fig. 21. Oil saturation and pressure prediction distribution in the 20th layer. The first two rows show the results of the reference full-order simulation and the E-U-Net surrogate
model, respectively. The third row shows the prediction error of the E-U-Net model. Different columns represent results at different time steps.
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Fig. 21 displays the predicted oil saturation and pressure states
in the 20th layer at selected time steps for one test run. It is clear
that the E-U-Net model provides predictions that are very close to
the reference results for both saturation and pressure states at
different time steps. The prediction errors for saturation are
generally less than 0.02, and the errors for pressure are generally
below 5 bar except for a few grid blocks at an early time, as shown
in Fig. 21(b). Fig. 22 shows the correspondingwell rate prediction. It
is evident that the trained E-U-Net model can provide very accurate
predictions for well rates (i.e. water and oil production rates for
producers and water injection rates for injectors) under a time-
varying well control setting.

Fig. 23 compares the predicted cumulative water/oil production
and cumulative water injection at each simulation time step for all
100 test runs. The x-axis and y-axis represent the true results and
the E-U-Net predicted results. It is evident that the E-U-Net sur-
rogate model provides accurate predictions with small MSE and
high R2 scores (all above 0.99). These results demonstrate the ac-
curacy and robustness of the trained E-U-Net model for the case
considered here.

The production optimization process uses the trained E-U-Net
surrogate model to replace the time-consuming full-order simu-
lation. During the production optimization process, we aim to
identify the time-varying well control variables (BHPs in this case)
that maximize the NPV, as calculated in Eq. (9). The economic pa-
rameters relevant to the NPV calculation are presented in Table 6.
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The E-U-Net based surrogate model developed in this work can
be used in various optimization algorithms. Here, it is integrated
into the PSO. For a detailed description of PSO, please refer to
Table 1. During the production optimization process, the total
number of iterations is set to 1000, with 100 particles at each
iteration. The BHPs of the producers range from 180 to 230 bar,
while the BHPs of the injectors vary from 500 to 700 bar. Each
particle represents a potential solution in the 260-dimensional
space, corresponding to the control values of the 26 wells over 10
time steps.

Fig. 24 shows the evolution of NPVs during the model training
and well-control optimization procedures. The vertical gray dashed
lines separate the plot into three sections: NPV calculated from
low-fidelity training runs, NPV calculated from high-fidelity runs
used for fine-tuning, and optimal NPV for each iteration during PSO
optimization. The redmarkers stand for validation runs at each 100
iterations performed by full-order simulations. There are three key
observations here. Firstly, the field development of NPVs can be
improved significantly. It is apparent that improved NPVs can be
obtained by optimizing the well-control parameters. The optimal
NPV from initial full-order high-fidelity simulations is about
4:2� 109 $, while the final optimal NPV is about 4:7� 109 $. Sec-
ondly, the final optimal NPV from the E-U-Net surrogate model
prediction is noticeably higher than that from all the training
simulations, which demonstrates the extrapolation capability for
the trained E-U-Net model. Finally, throughout the iterations, the



Fig. 22. Well rate prediction at different times. The black line represents true results obtained from full-order simulation, and the red dashed line denotes the predictions from the
E-U-Net model.

Fig. 23. Crossplots of cumulative oil production, cumulative water production, and cumulative water injection for all 100 test runs at each time step.
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Table 6
Economic parameters related to reservoir development NPV calculation.

Economic parameters Values

Crude oil price ro, $/m3 600
Produced water handling costs cpw, $/m3 30
Water injection costs ciw, $/m

3 30
Producer drilling and completion costs co, $/well 5.0 � 106

Injectors drilling and completion costs cw, $/well 5.0 � 106

Average annual discount rate b, % 10.0

Fig. 24. The evolution of NPV during the optimization process and the NPV of all
training runs. Blue and green points stand for the NPV calculated from 300 low-fidelity
and 50 high-fidelity training runs, respectively. Yellow triangles are the optimal NPV
obtained from the E-U-Net surrogate model at each PSO iteration, and the red stars
represent runs from full-order simulations.
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trained E-U-Net model remains robust and provides accurate pre-
dictions as can be seen from the consistency between E-U-Net and
full-order results.

The BHP parameters for the optimal run are displayed in Fig. 25.
It is evident that the E-U-Net-based production optimization has
resulted in significant variations in the BHP settings of different
Fig. 25. Optimized BHPs (in bar)
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wells. Some wells have BHP settings that reach the maximum or
minimum values within the allowable ranges, such as I9, P3, P12,
P14, and P16. The optimization procedure optimized the produc-
tion parameters for each well according to the specific well pro-
ductivity and reservoir conditions, which led to improved final NPV
as shown in Fig. 24. For example, producer P10 has very high oil
rates but low water rates as shown in Fig. 22; therefore, as ex-
pected, the corresponding BHP settings were optimized to be at the
lower bound, as shown in Fig. 25(b), to enable more fluid to be
produced from P10. While producers P12 and P14 have very high
water cut, as is apparent in Fig. 22, the final optimized BHP settings
were at the upper bound to reduce the associated produced fluids.

Fig. 26 displays the cumulative oil production (COP), cumulative
water production (CWP), and cumulative water injection (CWI).
The gray curves stand for results from all 100 particles of the first
PSO iteration, and the red curves are the final optimized solution.
We can see that the optimized solution leads to noticeably high
COP, while maintaining slightly higher levels of CWP and CWI.
Considering the optimized BHP settings shown in Fig. 25, the re-
sults demonstrate the capability of using the E-U-Net surrogate
model, in conjunction with PSO optimization algorithms, for
reservoir production optimization.

In this section, we used the surrogate model built with multi-
fidelity data to optimize production in the SAIGUP reservoir
model and achieved satisfactory field-development NPV improve-
ments. The use of the trained E-U-Net surrogate model can
significantly reduce the computational cost associated with the
optimization process. A total of 300 low-fidelity and 50 high-
fidelity simulation runs were used with the E-U-Net model, and
the following PSO optimization based on E-U-Net was extremely
efficient since each E-U-Net model evaluation only takes a few
seconds. Without the surrogate model, a total of 100,000 full-order
simulations (1000 iterations multiply 100 runs per iteration) would
be required with the standard PSO algorithm used in this study,
which can be computationally infeasible.

6. Conclusions

In this study, we developed a novel methodology for con-
structing a deep-learning-based surrogate model that uses multi-
fidelity data in combination with transfer learning. This method
aims to accelerate the construction of surrogate models for the
of injectors and producers.



Fig. 26. Initial and final optimized results for cumulative oil production, cumulative water production, and cumulative water injection. Here the initial results correspond to all 100
candidate solutions used for the first iteration of PSO algorithm.
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dynamic characterization of subsurface flow under time-varying
well controls. The surrogate model is based on an improved 3D
U-Net architecture, referred to as E-U-Net, and is trained through a
two-step process involving both high-fidelity and low-fidelity
training data. The low-fidelity training data is generated effi-
ciently from upscaled reservoir models and used to train a so-called
pre-trained E-U-Net model. Parameters of the pre-trained E-U-Net
model can then be fine-tuned using a much smaller number of
high-fidelity training data. In the E-U-Net model, a dedicated
embedding module is also introduced to better capture the effect of
well-control input parameters.

A comprehensive analysis of the proposed E-U-Net model was
performed through a 3D synthetic model. By testing the surrogate
model performance on 100 test cases with randomly sampled well-
control settings, the proposed E-U-Net model showed clearly
improved predictions of pressure and saturation states than those
from the traditional U-Net model. In addition, the simple yet
powerful two-step training procedure was shown to provide a
significant, ~75%, reduction in total computational cost for surro-
gate model training, while maintaining the same level of prediction
accuracy as the final trained model. Specifically, the prediction
median errors for pressure, saturation, and well rate with the sur-
rogate model trained with multi-fidelity data were 0.73 bar, 0.0011,
and 1.92 m3/day, compared to 0.51 bar, 0.0009, and 1.86 m3/day for
the reference surrogate model trained with 300 high-fidelity data.
Finally, we applied the proposed surrogate model for production
optimization of the SAIGUP reservoir model. The PSO algorithm
was used as the optimization engine, though more advanced al-
gorithms can be used. The results showed that the trained E-U-Net
surrogate model can provide accurate predictions during the
optimization process with an NPV higher than the maximum NPV
computed from the training runs, which demonstrated the gener-
alization and extrapolation capabilities of the trained E-U-Net
model.

There are several directions to explore for future work. Firstly,
the use of a multiple-step (more than two steps as done in this
study) training strategy can be explored to further reduce the
computational cost of model training. Such improvements will be
of interest when training surrogate models for very large-scale
reservoir models. Secondly, in this study, the model parameters
(i.e.: permeability) are assumed to be known a priori. It will be
important to efficiently construct accurate surrogate models
considering the existence of uncertain model parameters and time-
varying well controls, alleviate the computation burden required
for close-loop reservoir management. Finally, we will investigate
and improve the proposed approach for more challenging cases,
such as three-phase flow and compositional modeling.
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