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a b s t r a c t

Numerical simulation is an essential technique for CO2 geological storage operations. However, high-
resolution geological models typically consist of a large number of grid blocks, making numerical sim-
ulations computationally expensive and time-consuming. Upscaling methods are commonly used to
coarsen the fine-scale geological model, with global flow-based upscaling methods generally demon-
strating the highest accuracy. However, since these methods require solving flow equations over the
global domain, which is still time-consuming, their applications are typically limited to cases where the
coarse model is reused repeatedly (e.g., history matching or optimization). To overcome these limita-
tions, this study develops a novel deep learning (DL)-based upscaling framework for the simulation of
CO2 injection into saline aquifers. The framework incorporates convolutional neural networks (CNNs),
Transformer encoders, and Fourier neural operators (FNOs) to construct surrogate models for upscaled
well index, permeability, relative permeability, and capillary pressure. A preprocessing procedure is first
applied to address the issue of inaccurate upscaled parameters, which are typically caused by weak flow
conditions in traditional upscaling computations. Then the surrogate models are trained using relevant
local information, and the trained surrogate models are used to replace traditional numerical upscaling
computations, enabling instantaneous and parallel predictions of upscaled parameters. Two represen-
tative flow patterns (left-to-right and bottom-to-top) are considered to evaluate the framework's per-
formance. The results demonstrate that the DL-based framework significantly improves computational
efficiency, achieving a speedup factor of approximately 1133 times compared to traditional upscaling
methods. Additionally, it maintains or even enhances simulation accuracy, as the surrogate models
correct inaccurate upscaled parameters.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Numerical simulation is essential for CO2 geological storage
operations to ensure accurate predictions of CO2 behavior and
storage capacity. However, geological models are typically gener-
ated at high resolutions to capture the significant heterogeneity
that occurs across various length scales (Durlofsky, 2005; Zhang
et al., 2021). Direct numerical simulations of these high-
resolution geological models are usually computationally expen-
sive. Furthermore, when uncertainty quantification, history
y Elsevier B.V. on behalf of KeAi Co
matching or optimization is required, a substantial number of
simulation runs are necessary, which further increases computa-
tional costs. To address this issue, upscaling methods are often
employed to coarsen high-resolution models to accelerate the
simulation process.

Researchers have developed upscaling methods for CO2

geological storage simulation with notable works described as
follows. Mouche et al. (2010) proposed a homogenization-based
technique to upscale the vertical migration of a CO2 plume using
a one-dimensional vertical model filled with a periodic porous
medium. Saadatpoor et al. (2011) applied average-based methods
to calculate upscaled permeability and porosity for CO2 migration
models, discovering that their method smoothed the capillary
pressure field, leading to potential errors. Behzadi and Alvarado
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(2012) and Bouquet et al. (2013) also employed average-based
calculations to obtain equivalent coarse-scale permeability. How-
ever, these studies utilized analytical methods that are generally
less accurate than the flow-based upscaling methods (Durlofsky,
2005; Efendiev and Durlofsky, 2004; Renard and De Marsily,
1997). Rabinovich et al. (2015) developed a flow-based upscaling
procedure for CO2 storage simulation, but this work primarily used
global upscaling methods, which entail simulations over global
domain and remain computationally expensive. Moreover, this
study employed simplified models, neglecting critical factors such
as solubility effects, which are essential for accurately capturing the
complexities of CO2-water dynamics.

Machine learning (including deep learning) techniques have
shown increasing potential for applications in subsurface flow
simulation. Tang and Durlofsky (2022), Wang N. et al. (2023a), Tang
et al. (2021) employed machine learning algorithms to optimize
well locations or control parameters. While Han et al. (2024), Jo
et al. (2021), Li and Misra (2021), Srinivasan et al. (2021) utilized
machine learning methods to accelerate history matching pro-
cesses. Moreover, Wen et al. (2022, 2023) and Wang N. et al.
(2023b) employed deep learning models as surrogates for numer-
ical simulations, providing rapid predictions for subsurface flow
problems. There have also been limited studies exploring machine
learning in the context of upscaling, where these methods are
employed to accelerate upscaling calculation processes. Bohne
(2018) utilized least squares and kernel ridge regression algo-
rithms to establish a mapping from fine-scale to coarse-scale
permeability. However, the employed upscaling methods and ma-
chine learning algorithms were relatively rudimentary, leading to
limited predictive accuracy. Wang Y. et al. (2022, 2023) proposed
machine learning-assisted upscaling methods for watereoil sys-
tems, which employed convolutional neural networks (CNNs) and
machine learning regression algorithms to predict upscaled relative
permeabilities. However, these studies only involved machine
learning methods for local relative permeability upscaling. Simi-
larly, Wang N. et al. (2023b) trained CNN models to predict
upscaled hydraulic conductivity but only considered simple single-
phase flow scenarios.

The purpose of this paper is to leverage deep learning (DL)
techniques to achieve efficient upscaling for simulating CO2 injec-
tion into saline aquifers.We consider full-physics geological models
that account for mutual solubility of CO2 and brine, salt precipita-
tion, relative permeability hysteresis, gravity, compressibility of
rock and fluids, and capillary heterogeneity. To address these
complexities, we propose a novel upscaling framework that in-
tegrates flow-based upscaling methods for transmissibility, well
index, and relative permeability, as well as a steady-state upscaling
method for heterogeneous capillary pressure. DL surrogate models
are developed for these upscaled parameters by combining
advanced architectures, including convolutional neural networks
(CNNs), Transformer encoders, and Fourier neural operators
(FNOs).

To our knowledge, this study represents the first application of
DL techniques to upscaling in CO2 storage simulations. By
leveraging a big dataset of 8000 geological models, we demonstrate
the effectiveness of the proposed approach in two representative
flow patterns: left-to-right and bottom-to-top. Preprocessing steps
are introduced to address the issue of inaccurate upscaled param-
eters, ensuring the reliability of the surrogate models. After
training, the DL predictions replace traditional numerical upscaling
computations, providing not only significantly improved efficiency
but also enhanced accuracy and robustness. This approach enables
the instantaneous and parallel prediction of upscaled parameters
with improved accuracy, making it a practical solution for CO2
storage simulations.
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The remainder of this paper is organized as follows. In Section 2,
we present the governing equation of the full-physics geological
model and describe the upscaling methodology. Section 3 details
the generation of geological models. In Section 4, we develop the
deep learning surrogate models to predict upscaled parameters.
The overall workflow is introduced in Section 5. The results are
presented in Section 6. In Section 7, we discuss the findings, and
finally, conclusions and future work are provided in Section 8.

2. Governing equation and upscaling methodology

2.1. Governing equation

We consider a multiphase flow system that includes CO₂ (non-
wetting phase) and brine (wetting phase). This system accounts for
the mutual solubility of CO₂ and brine, as well as salt precipitation,
but excludes molecular diffusion and mineralization effects since
they are not significant during the CO2 injection stage. The general
form for the mass accumulation of component a, which could be
either CO2 or brine, is defined as follows:
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where a represents a component; t is the time; qa is the volumetric
source of component a; f is the porosity; Sj is the saturation of
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where Fj represents the flux of phase j; uj is the Darcy velocity of
phase j; K is the permeability tensor; Krj is the relative permeability
of phase j; mj is the viscosity of phase j; g is the gravitational ac-
celeration; and pj is the pressure of phase j.

Capillary pressure is taken into account in this system, a rela-
tionship between the gas phase pressure and the water phase
pressure is expressed as follows:

pg ¼ pw þ Pc; (3)

where Pc denotes the capillary pressure; pg designates the gas
phase pressure; pw represents the water phase pressure.

For the coarse-scale system, the governing equations retain the
same form as those in the fine-scale system, but the fine-scale
parameters are replaced with corresponding upscaled parame-
ters. We note that the fine- and coarse-scale two-phase governing
equations are solved using the CO2STORE option in Eclipse.

2.2. Upscaling methodology

In this study, we develop both single-phase and two-phase
upscaling procedures. The single-phase upscaling involves global
flow-based upscaling methods for well index and permeability,
while the two-phase upscaling includes global flow-based relative
permeability upscaling and steady-state capillary pressure upscal-
ing under the capillary limit (CL) assumption, which refers to a flow
regime where capillary forces dominate over viscous forces in
controlling fluid flow (Lohne and Virnovsky, 2006). The single-
phase and two-phase upscaling procedures are introduced as
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follows.
2.2.1. Single-phase upscaling
The single-phase upscaling procedure begins with a global

single-phase fine-scale simulation. Then the upscaled well index
can be calculated using the simulation results via:

WI*i ¼
PNw

l¼1

�
qfwell

�
l

Cpf Di � CpfwellDi
; (4)

where Nw is the number of fine-scale well blocks within a single

coarse block i;
PNw

l¼1ðqfwellÞl is the total flow rate of all fine-scale

wells within the coarse grid block i; CpfwellDi is the volume-

averaged wellbore pressure; and Cpf Di designates the volume-
averaged pressure of fine grid blocks over the coarse well block i.

An example of the computation of WI* is shown in Fig. 1. For
simplicity, Cartesian uniform grids are employed. The dotted lines
indicate the fine-scale grid blocks, while the solid lines represent
the target coarse block. The circles denote the locations of fine-scale
wells. In this example, nine fine-scale grid blocks are upscaled into
a single coarse block, and the two fine-scale wells aremerged into a
single equivalent well within the coarse block. In this context,PNw

l¼1ðqfwellÞl is calculated as the sum of flow rates of the two fine-

scale wells, Cpf Di is determined as the average pressure of the nine
fine-scale grid blocks, and CpfwellDi is computed as the average
wellbore pressure of the two fine-scale wells.

Flow-based permeability upscaling is typically divided into the
computation of upscaled permeability K* or upscaled trans-
missibility T*. Previous research (Chen et al., 2003; Romeu and
Noetinger, 1995) has indicated that computing upscaled trans-
missibility T* tends to be more accurate than computing upscaled
permeability K*. Therefore, we also compute T* using the following
expression:

T*iþ1
2
¼

Cqf Diþ1
2

Cpf Di � Cpf Diþ1 � rgDDc
; (5)

where i and iþ 1 refer to the indices of two adjacent coarse blocks,
while iþ 1

2 indicates the index of the interface between these coarse

blocks; Cqf Diþ1
2
denotes the total flow rate across the fine grids at the

coarse interface; Cpf D represents the volume-averaged fine-scale
pressure over the coarse block; r is the density; g is the
Fig. 1. Example of computing
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gravitational acceleration; and DDc is the depth difference between
coarse blocks i and iþ 1 (for the x and y directions,DDc equals zero).

Fig. 2 illustrates an example of computing T* in a two-
dimensional (xey) Cartesian coordinate system with uniform
grids. The upscaled transmissibility T* is anisotropic and must be
computed separately for each direction (i.e., T*

x and T*y are calcu-

lated independently). Taking T*
y as an example (as shown in the

right subplot), the total flow rate across the coarse interface is

computed as Cqf Diþ1
2
¼P5

i¼1qi. The volume-averaged pressures Cpf Di

and Cpf Diþ1 are calculated as the average pressures of the fine-scale
grid blocks within the coarse blocks i and iþ 1, respectively.

Additionally, unphysical upscaled parameters (i.e., infinite
values, not-a-numbers (NaNs), abnormal zeros, or negative values)
may appear during flow-based upscaling computations (Chen,
2005; Li and Durlofsky, 2016), which usually cannot be accepted
by numerical simulators. To address this issue, we develop
replacement methods for the unphysical data.

For the unphysical upscaled well index, the equivalent perme-
ability of the coarse well block is computed using the geometric
mean method (Selvadurai and Selvadurai, 2014). The equivalent
permeability is then applied to calculate the equivalent well index
WI(K*), which replaces the unphysicalWI*. For example, in the case
of a vertical well in a three-dimensional model, the equivalent well
index is computed as follows:

WI ¼ 2p
ffiffiffiffiffiffiffiffiffiffi
kxky

p
Dz

ln
ro
rw

; (6)

where ro is the equivalent radius, defined as

ro ¼ 0:28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky
kx

s
Dx2 þ

ffiffiffiffiffi
kx
ky

s
Dy2

vuut
ffiffiffiffiffi
ky
kx

4

s
þ

ffiffiffiffiffi
kx
ky

4

s ; (7)

where rw represents thewellbore radius; Dx, Dy, and Dz are the grid
block dimensions; the terms kx and ky denote the permeabilities in
the x and y directions, respectively.

For the unphysical upscaled transmissibility, the equivalent
permeabilities of the two coarse blocks on both sides of the target
coarse interface are also calculated using the geometric mean
method (Selvadurai and Selvadurai, 2014). These equivalent
upscaled well index WI* .

mailto:Image of Fig. 1|tif


Fig. 2. Example of computing upscaled transmissibility T*.

Fig. 3. Example of computing relative permeabilities K*
rg and K*

rw.
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permeabilities are then employed to calculate the equivalent
transmissibility, which replaces the unphysical T*. For a scenario in
the x direction, the calculations follow these equations:

keiþ1
2
¼ ðDxi þ Dxiþ1Þkei keiþ1

Dxiþ1kei þ Dxikeiþ1
; (8)

Teiþ1
2
¼

2keiþ1
2
DyDz

Dxi þ Dxiþ1
; (9)

where kei and keiþ1 represent the equivalent permeabilities of coarse
blocks i and iþ 1, respectively; Teiþ1

2
denotes the equivalent trans-

missibility at the target coarse interface; Dx, Dy, and Dz refer to the
dimensions of the coarse block.

2.2.2. Two-phase upscaling
The global flow-based relative permeability upscaling initially

entails a two-phase fine-scale simulation over the global domain.
The results of this fine-scale simulation are then used to calculate
the upscaled relative permeabilities through the following
equations:

K*
rg ¼

CmfgDCq
f
gDiþ1

2

T*
iþ1

2

�
Cpf Di � Cpf Diþ1 � rcggDDc

� ; (10)

K*
rw ¼

CmfwDCq
f
wDiþ1

2

T*
iþ1

2

��
Cpf Di � P*c;i

�
�
�
Cpf Diþ1 � P*c;iþ1

�
� rcwgDDc

� ;
(11)

where i and iþ 1 represent two neighboring coarse blocks; iþ 1
2

indicates the coarse interface separating these coarse blocks; T*
iþ1

2
is

the upscaled transmissibility defined at the coarse interface. The
coarse-scale viscosities of the gas and water phases, represented by
CmfgD and CmfwD, are calculated as volume averages over the upstream
coarse block. The volume-averaged pressure of fine gird blocks
within coarse block i is denoted by Cpf Di. P*c;i represents the upscaled
1715
capillary pressure of coarse block i. CqfgDiþ1
2
and CqfwDiþ1

2
denote the

sum of gas and water phase flow rates across the fine grids at the
coarse interface, respectively. rcg and rcw represent the volume-
averaged densities of the gas and water phases across the two
coarse blocks that share the target interface. g denotes gravitational
acceleration, and DDc is the depth difference between coarse blocks
i and iþ 1 (for the x and y directions, DDc equals zero).

Similarly, the upscaled relative permeabilities K*
rg and K*

rw

should be calculated anisotropically (as shown in Fig. 3). We note
that the calculated K*

rg and K*
rw are defined at the coarse interface.

However, since our simulator only accepts relative permeabilities
defined on grid blocks, the computed K*

rg and K*
rw at the coarse

interface are assigned to the upstream coarse block.
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Fig. 4. Fine-scale relative permeability curves.

Fig. 5. Capillary pressure curve at porosity of 0.25 and permeability of 50 mD.
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In our study, we discover that the presence of solubility greatly
impacts the computation of upscaled relative permeability, leading
to substantial errors. To mitigate this issue, simplified models that
exclude solubility effects are used to perform the relative perme-
ability upscaling computations. The resulting upscaled relative
permeabilities are then applied to the coarse-scale full-physics
model for numerical simulations. Similarly, flow-based relative
permeability upscaling may generate unphysical data. We replace
these unphysical data with fine-scale relative permeability curves.

The CL-based capillary pressure upscaling method demon-
strates both high accuracy and computational efficiency among
various existing capillary pressure upscaling methods (Cheng and
Rabinovich, 2020). It works by inverting the saturation-capillary
pressure relationship and averaging fine-scale saturation over the
target coarse block under a range of capillary pressures. For detailed
descriptions of this method, please refer to Rabinovich et al. (2016).

3. Geological models

The full-physics models are developed using the CO2STORE
option in Eclipse (e300) to simulate CO2 injection into saline
aquifers. These models employ the CO2-water equation of state
provided by Spycher et al. (2003) and Spycher and Pruess (2005),
which is applicable for temperatures within the range of 12 to
250 �C and pressures up to 600 bar. Our full-physics models ac-
count for relative permeability hysteresis, gravity, compressibility
of rock and fluids, mutual solubility of CO2 and brine, salt precipi-
tation, and capillary heterogeneity. However, molecular diffusion
and mineral trapping are excluded from the simulations, as their
effects are considered negligible during the injection phase.

We consider two-dimensional models defined on an xez Car-
tesian coordinate system. These models consist of 200� 200 grid
blocks, with each grid block uniformly dimensioned at
Dx ¼ Dy ¼ Dz ¼ 5 m. The upscaling ratio is set to 10� 10 ¼ 100,
resulting in coarse models composed of 20� 10 coarse blocks. The
reservoir is situated at a depth of 1000 m, leading to an initial
pressure of 100 bar at the top boundary of themodels. The reservoir
temperature is kept constant at 55 �C. Under these conditions, CO2
remains in a supercritical state. The rock compressibility is set to
4:934� 10�5 bar�1. The porosity is uniformly set to 0.25.

The permeability field is generated using Stanford Geostatistical
Modeling Software (SGeMS) (Remy et al., 2009). We consider
various types of permeability distributions, including Gaussian
distributions with a range of correlation lengths, generated by the
sequential Gaussian simulation (SGSIM) algorithm (Deutsch and
Journel, 1992), and channelized distributions with horizontal and
inclined channels, generated by the single normal equation simu-
lation (SNESIM) algorithm (Strebelle, 2000, 2002). Samples of these
models will be presented in Section 5.1. It should be noted that we
assume an isotropic permeability field (i.e., kx ¼ ky) in this study for
simplicity.

The fluid components include water, CO2, and NaCl. Water and
CO2 can exist in both liquid and gas phases, while NaCl can exist in
both liquid and solid phases. The relative permeability curves are
identical to those used in Zou and Durlofsky (2023), as shown in
Fig. 4. Heterogeneous capillary pressure is defined using the
Leverett-J function (Leverett, 1941):

Pc
�
Sg; k;f

� ¼ J
�
Sg
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kref
.
fref

k=f

vuut
; (12)

where k and f denote the permeability and porosity; kref and fref
refer to the reference permeability and porosity; Sg represents the
gas saturation; and J(Sg) is the Leverett-J function. The capillary
1716
pressure curve calculated using a porosity of 0.25 and a perme-
ability of 50 mD is presented in Fig. 5.

The models are initially saturated with brine containing
10,000 ppm NaCl and are driven by an injector with a constant CO2
injection rate of 0.02 Mt/year and a producer with a constant bot-
tomhole pressure (BHP) of 100 bar. We consider two basic flow
patterns: left-to-right and bottom-to-top. In the left-to-right flow
scenario (Fig. 6(a)), the CO2 injector is positioned on the leftmost
side of the model, while the producer is located on the rightmost
side of the model, with both wells perforating the entire reservoir.
In the bottom-to-top flow scenario (Fig. 6(b)), a horizontal injector
is placed in the bottommost grid layer, while a horizontal producer
is located in the topmost grid layer. Both wells are perforated along
the full heel-to-toe trajectory. Samples of these two well trajec-
tories are shown in Fig. 6.

Note that these geological models represent pilot tests rather
than full-field CO2 storage projects. Similar-sized models and well
configurations have been used in previous CO2 storage studies
(Cameron and Durlofsky, 2012; Cheng and Rabinovich, 2020; Ide
et al., 2007; Itthisawatpan, 2013; Juanes and MacMinn, 2008; Kou
et al., 2022; Rabinovich et al., 2015). Additionally, this study
serves as a preliminary investigation for deep learning-based

mailto:Image of Fig. 4|tif
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Fig. 6. Schematics showing well configurations for left-to-right flow and bottom-to-top flow scenarios.
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upscaling, with many parameters of the geological models fixed to
reduce complexity. In future revisions, a broader range of param-
eters will be considered.

4. Deep learning surrogate models

In this section, we introduce the architectures of the surrogate
models designed to replace the upscaling computations for well
index, transmissibility, capillary pressure curve, and relative
permeability curve. Due to the significant differences among these
parameters, constructing and training a single surrogate model
would be inefficient. Therefore, we develop dedicated surrogate
models for each upscaled parameter. This allows us to employ
simpler surrogate models that require less training time. Detailed
descriptions are provided as follows.

4.1. Surrogate model for upscaled well index

The surrogate model for upscaled well index takes coarse well
block properties as inputs and provides the predicted upscaled well
index as output. The predictions can be expressed by

byWI* ¼ fWI*ðKlocal;Xwell;WI; qWI* Þ; (13)

where byWI*2R represents the predicted upscaled well index;
Klocal2Rnx�nz denotes the local permeability distribution of the
coarsewell block, with nx and nz representing the dimensions of the
local permeability in the x and z directions, respectively; Xwell2 R

represents the location of the coarse well block; WI2 Rnw denotes
the fine-scale well indices within the coarse well block with nw
referring to the number of fine-scale perforations; qWI* represents
the learnable parameters.

The upscaled well index surrogate model is constructed by
integrating CNN and Transformer encoder. CNN is effective in
capturing local spatial features through convolutional layers,
making it particularly suited for processing grid-based inputs like
permeability matrices. For more CNN applications in reservoir en-
gineering, refer to Wen et al. (2021), Kwon et al. (2021), and
Madasu et al. (2019). On the other hand, the Transformer encoder
excels at handling long-range dependencies and contextual re-
lationships within the data due to its self-attention mechanism
(Wolf et al., 2020). By combining these two architectures, themodel
benefits from CNN's feature extraction capacity and the Trans-
former's global attention mechanism, resulting in more robust and
accurate predictions.

The detailed architecture of this surrogate model is shown in
Fig. 7. The model begins with a local permeability input (with a size
1717
of 10 � 10 in this study), which passes through two convolutional
layers (Conv_1 and Conv_2), each followed by leaky ReLU activation
andmax pooling. The feature maps are progressively downsampled
from a size of 32@10 � 10 to 64@2 � 2, after which they are flat-
tened and passed through fully connected layers. Additional inputs,
i.e., location of the coarse well block and fine-scale WI (with a size
of 10 in this study), are also processed via fully connected layers. All
inputs are then merged and fed into a Transformer encoder to
produce the final upscaled well index (WI*) output. The architec-
ture of the Transformer encoder is shown in Fig. 8. The Transformer
encoder consists of 3 layers, each equipped with a multi-head
attention mechanism with 4 attention heads (nhead ¼ 4). The
feed forward neural network in each layer has a hidden dimension
of 256 (dim ¼ 256).

4.2. Surrogate model for upscaled transmissibility

The surrogatemodel for upscaled transmissibility accepts coarse
block properties as inputs and produces the upscaled trans-
missibility predictions. The prediction process (i.e., fT* ) can be
expressed as follows:

byT* ¼ fT*ðKlocal;Xinter;WI*; qT*Þ; (14)

where byT*2R represents the predicted upscaled transmissibility;
Klocal2Rnx�nz refers to the local permeability field of the target
region, which includes two coarse blocks that share the coarse
interface; nx and nz represent the number of fine grid blocks in the x
and z directions within the target region; Xinter2R represents the
location of the coarse interface where T* is defined; WI*2R rep-
resents the upscaled well index of the upstream coarse block at the
coarse interface (if the upstream coarse block does not contain a
well perforation, WI* is set to 0); qT* represents the trainable
parameters.

Transmissibility upscaling shares similarities with well index
upscaling, as both rely on global single-phase simulation. Conse-
quently, we designed a surrogate model similar to the upscaled
well index surrogatemodel, which integrates CNN and Transformer
encoder. Taking the x-directional upscaled transmissibility in T*x as
an example, Fig. 9 shows the architecture of the surrogate model.
The Transformer encoder used in this model is identical to that
shown in Fig. 8. The local permeability includes the two coarse
blocks that share the coarse interface at which T* is defined, thus
the size of the local permeability in x direction is 20 � 10. For the z
direction, the local permeability size is 10 � 20, and the surrogate
model architecture remains unchanged. However, the dimensions
of the local permeability input and the feature maps output by CNN
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Fig. 7. Schematics showing the architecture of the surrogate model for upscaled well index.

Fig. 8. Schematics showing the architecture of the Transformer encoder.
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layers are swapped in height and width accordingly. Note that we
train two separate surrogate models for the x- and z-directional
upscaled transmissibility because the difference in input sizes in-
creases the training complexity.
4.3. Surrogate model for upscaled capillary pressure

Fine-scale capillary pressure is defined using the Leverett-J
function (Eq. (12)), which depends on permeability and porosity
in this paper. Since we use a constant porosity, the surrogate model
for upscaled capillary pressure requires only local permeability as
input to predict the upscaled capillary pressure curve. To make it
easier for the surrogate model to recognize capillary pressure-
saturation curves, we discretized the curves into 12 points, with
each point corresponding to a specific saturation value. The pre-
diction process, denoted as fP*

c
, can be expressed as

byP*
c
¼ fP*

c

�
Klocal; qP*

c

�
; (15)

where byP*
c
2R12 represents the predicted upscaled capillary pres-

sure points; Klocal2Rnx�nz denotes the local permeability of the
target coarse block, with nx and nz representing the block's di-
mensions in the x and z directions, respectively; and qP*

c
represents

the trainable parameters.
Fig. 10 shows the architecture of the surrogate model for

upscaled capillary pressure. The model takes local permeability (of
size 10� 10) as input and processes it through CNN layers followed
by fully connected layers. The CNN extracts relevant features from
the permeability data, while the fully connected layers output the
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Fig. 9. Schematics showing the architecture of the surrogate model for upscaled transmissibility.

Fig. 10. Schematics showing the architecture of the surrogate model for upscaled capillary pressure.
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discretized capillary pressure values, which are then combined to
form the complete capillary pressure curve.

4.4. Surrogate model for upscaled relative permeability

The surrogate model for upscaled relative permeability takes
the properties of the target coarse block and the upscaled param-
eters predicted by other surrogatemodels described earlier as input
and predicts the upscaled relative permeability. Similar to the
approach used for capillary pressure, we discretized the relative
permeability-saturation curves into 12 points, each corresponding
to a specific saturation value. The prediction can be expressed as
follows:
1719
byK*
r
¼ fK*

r

�
Klocal;Xinter;WI*; T*; P*c ; qK*

r

�
; (16)

where byK*
r
2R12 represents the predicted upscaled relative

permeability points; Klocal2Rnx�nz represents the local perme-
ability, which includes two coarse blocks sharing the target coarse
interface. Similarly, nx and nz represent the dimensions of the local
permeability. Specifically, for the x direction, nx ¼ 20 and nz ¼ 10,
while for the z direction, nx ¼ 10 and nz ¼ 20. Xinter2R denotes the
location of the target coarse interface. WI*2R represents the
upscaled well index of the upstream coarse block at the coarse
interface. If the upstream coarse block lacks a well perforation, WI*
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Fig. 12. Schematics showing the architecture of the FNO.

Y.-J. Wang, Y. Jin, B.-T. Lin et al. Petroleum Science 22 (2025) 1712e1735
is assigned a value of 0. T*2R denotes the upscaled trans-
missibility, and P*c2R12 denotes the predicted upscaled capillary
pressure points. qK*

r
represents the learnable parameters.

Relative permeability upscaling is the most complex part of the
entire upscaling procedure, as it involves solving partial differential
equations (PDEs) for intricate two-phase flow problems. Further-
more, relative permeability is a dynamic property that changes
with saturation (or time), which adds additional difficulty for deep
learning models to capture this continuous variation. To improve
accuracy, we developed a surrogate model that integrates CNN,
Transformer encoder, and FNO. FNO provides significant advan-
tages in addressing PDE-related problems. It uses Fourier trans-
forms to map spatiotemporal data into the frequency domain,
making it particularly well-suited for handling the dynamic
changes and complex interactions in two-phase flow problems. For
more discussion about FNO, please refer to Li et al. (2020, 2023).

Fig. 11 presents the architecture of the surrogate model for
upscaled relative permeability (again taking the x direction as an
example). The Transformer encoder architecture is identical to that
shown in Fig. 8, while the FNO architecture is illustrated in Fig. 12.
To reduce training complexity, the relative permeabilities for the
gas phase and water phase are trained separately in the x and z
directions. For the z direction, the height and width of the local
permeability and the outputs of CNN layers are swapped. As a
result, there are a total of four surrogate models for upscaled
relative permeabilities (i.e., K*

rw;x; K
*
rw;z; K

*
rg;x; K

*
rg;z).
Fig. 11. Schematics showing the architecture of the su
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5. Overall workflow

5.1. Datasets generation

Eight types of permeability distributions are considered,
including two types of channelized models with horizontal and
inclined channels, and six types of Gaussian models with varying
correlation lengths. For each type, 1000 models are randomly
generated following the descriptions in Section 3, resulting in a
total of 8000 different permeability distributions. Fig. 13 illustrates
the examples of the eight types of permeability (logk) distributions,
where lx and lz represent the correlation lengths in the x and z di-
rections, respectively.
rrogate model for upscaled relative permeability.
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Fig. 13. Schematics showing examples of the eight types of permeability (logk) distributions.
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5.2. Data preprocessing

Previous studies have shown that upscaled parameters calcu-
lated from coarse blocks (or interfaces) with low flow rates can be
inaccurate (Chen, 2005; Chen et al., 2003; Durlofsky, 2005). Using
these inaccurate upscaled parameters can degrade the quality of
the datasets, leading to a decline in the performance of surrogate
models. We categorize the inaccurate upscaled parameters into the
following three types and apply different handling methods.
1721
The first type is unphysical data, as mentioned earlier, which
refers to upscaled parameters with obvious errors that cannot be
accepted by numerical simulators, such as infinite values, NaNs,
abnormal zeros, or negative values. Unphysical data are easy to
identify and are typically replaced with computed alternative data.
However, since these replacements do not accurately represent the
upscaling results, all such replacement values should be excluded
when constructing datasets for deep learning models.

The second type is outlier data, which refers to upscaled
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Table 1
Performance metrics for surrogate models on training and validation sets.

Surrogate model Error metric Training set Validation set

WI* R2 0.9999 0.9999
MSE 0.0021 0.0020

T*x R2 0.9996 0.9996
MSE 0.0035 0.0036

T*z R2 0.9998 0.9998
MSE 0.0039 0.0041

P*c R2 1.0000 1.0000
MSE 0.0001 0.0001

K*
rw;x R2 0.9900 0.9886

MSE 0.1692 0.1928

K*
rg;x R2 0.9803 0.9786

MSE 0.3338 0.3512
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parameters that differ significantly from typical values but do not
exhibit the obvious errors mentioned above. Here, we employ the
isolation forest algorithm (Liu et al., 2008) to filter the outliers.

The third type is noise data, which refers to upscaled parameters
with certain errors but mixed with typical values, without showing
outlier characteristics. Noise data are difficult to identify. We
mitigate their impact by enhancing the generalization ability of the
deep learning model, such as by increasing the number of training
samples and strictly avoiding overfitting.

Additionally, we perform a logarithmic transformation
lnðxþ10�6Þ to both the input and output data. This transformation
enhances the contrast in small values, allowing the surrogate
model to more effectively capture and learn these variations, which
improves training efficiency and model performance. During the
inference process, the predictions need to be reverted to their
original scale using the inverse logarithmic function.
K*
rw;z R2 0.9772 0.9764

MSE 0.4295 0.4423

K*
rg;z R2 0.9791 0.9761

MSE 0.3650 0.3713

5.3. Training and inference strategies

The 8000 geological models described in Section 5.1 are split
into training, validation, and test sets with ratios of 40%, 10%, and
50%, respectively. Data preprocessing described in Section 5.2 are
applied to both the training and validation sets. During the training
process, the batch size is set to 256, and the learning rate is
initialized to 10�4. The mean square error (MSE) loss function is
employed

LMSE ¼ 1
N

XN
i¼1

kyi � byik22; (17)

where N is the number of training samples within a batch; y rep-
resents the true data; and by is the prediction from the surrogate
model. The Adam optimizer (Kingma, 2014) is used tominimize the
loss function. The surrogate models are trained on an NVIDIA A100
GPU.

Fig. 14 illustrates the workflow of the inference process. The
input data, including geological model and well configuration in-
formation, first pass through a feature extractor, which identifies
and extracts relevant features for each surrogate model. These
features are then passed into the trained surrogate models. Finally,
the prediction outputs from these surrogate models are aggregated
to construct coarse-scale models. Note that prediction values
smaller than 10�6 are treated as zero.
Fig. 14. Schematic showing the wor
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6. Results

To investigate the effect of flow patterns on DL-based pre-
dictions, we consider two flow patterns: left-to-right (Fig. 6(a)) and
bottom-to-top (Fig. 6(b)). These flow patterns are analyzed in the
following two cases.

6.1. Case 1: left-to-right flow scenario

6.1.1. Performance evaluation of surrogate models
The first case involves the left-to-right flow pattern. We first

evaluate the performance of the DL-based surrogate models.
Table 1 presents the performance metrics for surrogate models on
training and validation sets. The error metrics represent the
average errors of all samples. The MSE is defined by Eq. (17), while
R2 score is given by

R2 ¼ 1�

Pn
i¼1

ðyi � byiÞ2Pn
i¼1

ðyi � yÞ2
; (18)
kflow of the inference process.
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where n is the number of samples; yi is the true value; byi is the
predicted value; and y is the mean of the true values.

The surrogate models for WI*, T*x , T*
z , and P*c demonstrate

excellent accuracy, with R2 scores close to 1 and very low MSE er-
rors across both training and validation sets, indicating strong
generalization capabilities. In contrast, the surrogate models
related to upscaled relative permeabilities (i.e., K*

rw;x; K
*
rg;x; K

*
rw;z;

K*
rg;z) exhibit slightly lower performance. Therefore, we primarily

focus on analyzing the errors associated with the predicted
upscaled relative permeabilities. Fig. 15 shows samples of upscaled
relative permeabilities with P90 (90th percentile) MSE error in the
validation set. The black solid curves represent the true curves
computed by traditional flow-based upscaling, while the red
dashed curves denote the predicted curves from DL-based surro-
gate models. The results show that the predicted curves closely
match the true curves, particularly for those in the x direction. In
contrast, the predicted curves in the z direction exhibit larger er-
rors. We believe this is because, in this case, the fluid primarily
flows in the x direction, while the flow in the z direction is relatively
Fig. 15. Schematics showing K*
rw;x , K

*
rg;x , K

*
rw;z and K*

rg;z
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weak. As a result, a higher proportion of noise data is generated in
the z direction, which affects the deep learning model's perfor-
mance. However, since the z direction is not the main flow direc-
tion, the impact of these errors on the overall numerical simulation
results is minimal. As the figures show P90 errors, 90% of the
samples in the validation set have MSE errors lower than those
shown in the figures. This demonstrates that the DL-based pre-
dictions exhibit very high accuracy and robustness.
6.1.2. Use of surrogate models for upscaling
We now apply the trained surrogate models to perform

upscaling on the test set, which consists of 4000 geological models.
First, the surrogate models are used to predict the upscaled pa-
rameters for the coarse-scale models, after which numerical sim-
ulations are performed for fine- and coarse-scale models.
Subsequently, using the fine-scale simulation results as bench-
marks, we respectively calculate the relative errors for the tradi-
tional upscaling models and the DL-based upscaling models. The
relative errors in flow rates are calculated via
samples with P90 MSE error in the validation set.
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e1 ¼

ð
PVI

��yfine � ycoarse
��dPVIð

PVI
yfinedPVI

; (19)

while for pressure or saturation fields, the relative errors can be
calculated by

e2 ¼ 1
N

XN

j¼1

ð
PVI

���Cyfinej D� ycoarsej

���dPVI
ð
PVI

Cyfinej DdPVI
; (20)

where yfine represents the fine-scale results; ycoarse denotes coarse-
scale results; N is the number of coarse blocks in the global domain;

Cyfinej D represents the volume-averaged pressure or saturation of
fine grid blocks within the target coarse block; ycoarsej denotes the

pressure or saturation in the target coarse block; and PVI represents
pore volume injected.

Fig. 16 presents box plots showing the relative errors of gas (Qg)
and water (Qw) phase flow rates at the producer for traditional and
DL-based upscaling models. The red box plots represent the tradi-
tional upscaling model, while the blue box plots correspond to the
DL-based upscaling model. The labels aeh on the horizontal axis
correspond to eight permeability fields (examples shown in Fig.13),
and “total” represents the overall statistical error across all 4000
models in the test set. Each box plot summarizes the distribution of
relative errors, where the entire box represents the range from the
10th percentile (P10) to the 90th percentile (P90) of the data. The
positions of key percentiles (e.g., P25 and P75) are illustrated in the
green legend. The solid line inside the box indicates the median
relative error, the square represents the mean, and the whiskers
extend to 1.5 times the interquartile range (IQR), which represents
the difference between P25 and P75 of the data.

It is evident that DL-based upscaling model generally out-
performs the traditional upscaling model in terms of reducing the
relative errors of water phase flow rates across all permeability
types (Fig.16(a)). The DL-based upscalingmodel consistently shows
narrower error distributions, indicating more stable performance
with smaller variations. This suggests that the DL-based model
delivers more reliable and accurate predictions, while the
Fig. 16. Box plots showing the relative errors of gas phase and water phase fl
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traditional model tends to have greater variability and higher po-
tential for larger errors.

The box plots in Fig. 16(b) compare the relative errors of Qw
between traditional and DL-based upscaling models. The DL-based
upscaling models generally exhibit narrower error ranges and
whiskers, indicating lower variability in predictions. Furthermore,
the DL-based upscaling shows a clear advantage at higher per-
centiles (i.e., P90 and P75), where it outperforms the traditional
upscaling. However, at the lower percentiles (i.e., P25 and P10), no
significant improvement is observed with the DL-based upscaling
models compared to the traditional upscaling models. Overall, the
DL-based upscaling models demonstrate superior performance,
providing better accuracy and stability in most scenarios.

Figs. 17 and 18 present gas and water flow rate samples with
relative errors of P90, P75, P50, and P25. The P90 percentile is
critical for evaluating high-error scenarios in model performance,
indicating that 90% of the models produce more accurate results
than the sample at this level. The same interpretation applies to the
other percentiles. Notably, even at P90, the models demonstrate
reasonable accuracy, indicating that most models can achieve
reliable results using DL-based surrogate models.

Fig. 19 presents box plots showing the relative errors of gas
saturation and pressure fields for traditional and DL-based
upscaling models. The description of box plots is consistent with
the previous description. It is evident that the DL-based upscaling
model (in blue) consistently exhibits lower relative errors and
variability than the traditional upscaling model (in red).

We next analyze the field results generated by DL-based
upscaling models. Figs. 20 and 21 illustrate gas saturation field
samples with relative errors of P90 and P50, respectively. Each
sample is shown for two injection stages: PVI ¼ 0.1 (before gas
breakthrough) and PVI ¼ 0.5 (after gas breakthrough). The samples
presented in these figures demonstrate reasonable accuracy in the
gas saturation fields. Moreover, 90% of the models in the test set
outperform the results shown in Figs. 20, and 50% of the models are
more accurate than those shown in Fig. 21, indicating that most DL-
based models can reliably provide accurate gas saturation field
results.

The relative errors in the pressure field are lower than those of
the gas saturation field, as shown by comparing error values in
Fig. 19(a) and (b). Fig. 22 presents a pressure field sample with a
relative error of P90. The sample presented in the figure exhibits
very high accuracy, indicating the majority of DL-based models can
achieve highly accurate pressure field results.
ow rates at the producer for traditional and DL-based upscaling models.
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Fig. 17. Gas flow rate samples with relative errors of P90, P75, P50, and P25.
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6.2. Case 2: bottom-to-top flow scenario

6.2.1. Performance evaluation of surrogate models
The second case involves a bottom-to-top flow scenario.We first

evaluate the performance of the DL-based surrogate models in this
flow scenario. Table 2 shows the performance summary for surro-
gate models on training and validation sets. The MSE error and R2

score are calculated by Eqs. (17) and (18), respectively. The surro-
gate models forWI*, T*x , T

*
z , and P*c again exhibit excellent accuracy,

with R2 scores exceeding 0.999 and MSE errors below 0.005 for
both training and validation sets. Therefore, we primarily concen-
trate on surrogate models for upscaled relative permeabilities (i.e.,
K*
rw;x; K

*
rg;x; K

*
rw;z; K

*
rg;z), which are comparatively less accurate than

the aforementioned models. Fig. 23 illustrates samples of upscaled
relative permeabilities with P90 MSE error in the validation set,
which indicates that 90% of the upscaled relative permeability
predictions are more accurate than the samples shown in the
figure. By analyzing the data from Table 2 and Fig. 23, it is evident
that the predictions in the z direction are highly accurate, while the
accuracy in the x direction is comparatively lower. We attribute this
to the weaker flow in the x direction, as the z direction is the
1725
primary flow direction. As discussed earlier, weaker flows tend to
introduce a higher portion of noise data, which reduces the per-
formance of the surrogate models. However, errors in the non-
primary flow direction have a limited impact on the global simu-
lation results. Overall, the surrogate models for upscaled relative
permeabilities are able to provide reliable predictions.

6.2.2. Use of surrogate models for upscaling
We next apply the trained surrogate models to geological

models in the test set. Similarly, the relative errors of coarse-scale
simulation results are calculated using Eqs. (19) and (20). Fig. 24
illustrates box plots that illustrate the relative errors of gas and
water phase flow rates at the producer for traditional and DL-based
upscaling models. As described earlier, these box plots summarize
the distribution of relative errors across aeh types of permeability
fields, as well as the overall relative error. The red box plots
represent the traditional upscaling model, while the blue box plots
show the DL-based upscaling model. For the gas flow rates, the DL-
based upscaling models generally exhibit lower and more stable
relative errors compared to the traditional models. However, for the
water flow rates, the DL-based upscaling models provide no sig-
nificant improvement.
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Fig. 18. Water flow rate samples with relative errors of P90, P75, P50, and P25.

Fig. 19. Box plots showing the relative errors of gas saturation and pressure fields for traditional and DL-based upscaling models.
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Fig. 20. Gas saturation field sample with relative error of P90.

Fig. 21. Gas saturation field sample with relative error of P50.
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Fig. 22. Pressure field sample with relative error of P90.

Table 2
Performance metrics for surrogate models on training and validation sets.

Surrogate model Error metric Training set Validation set

WI* R2 1.0000 1.0000
MSE 0.0009 0.0008

T*x R2 0.9997 0.9996
MSE 0.0033 0.0034

T*z R2 0.9998 0.9997
MSE 0.0040 0.0044

P*c R2 1.0000 1.0000
MSE 0.0001 0.0001

K*
rw;x R2 0.9621 0.9613

MSE 0.5562 0.5677

K*
rg;x R2 0.9897 0.9895

MSE 0.1595 0.1621

K*
rw;z R2 0.9751 0.9748

MSE 0.3542 0.3575

K*
rg;z R2 0.9935 0.9935

MSE 0.0923 0.0924
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We further analyze the accuracy of the flow rates provided by
the DL-based upscaling models. Gas and water flow rate samples
with relative errors of P90, P75, P50, and P25 are presented in
Figs. 25 and 26. The results indicate that the DL-based upscaling
models provide reasonably accurate results, even though no sig-
nificant improvement is observed for water flow rates. This sug-
gests that most models in the test set are able to achieve reliable
accuracy for both gas and water phase flow rates.

Fig. 27 presents box plots comparing the relative errors of gas
1728
saturation and pressure fields between traditional and DL-based
upscaling models. The elements of the box plots follow the same
conventions as previously described. The DL-based upscaling
models demonstrate significantly lower relative errors compared to
traditional upscaling models, with notable improvements observed
in both the gas saturation and the pressure fields. In addition, The
DL-based upscaling models generally exhibit narrower error ranges
and lower median values, further indicating their superior perfor-
mance in reducing uncertainty and enhancing accuracy.

Figs. 28 and 29 show gas saturation field samples with relative
errors of P90 and P50, respectively. These samples are taken from
two injection stages: PVI ¼ 0.1 (before gas breakthrough) and
PVI¼ 0.5 (after gas breakthrough). In the test set, 90% of the models
perform better than the P90 result shown in Fig. 28, while 50%
outperform those presented in Fig. 29. These results demonstrate
reasonable accuracy, indicating that the majority of DL-based
upscaling models can produce adequately accurate gas saturation
results. The pressure field results provided by DL-based upscaling
models are highly accurate, as demonstrated by the P90 relative
error sample shown in Fig. 30.
7. Discussion

7.1. Speedup factors

We first compare the time costs of fine- and coarse-scale
models. In this study, numerical computations (i.e., numerical
simulations and upscaling computations) are performed on an
AMD EPYC 7543 CPU, while DL operations are executed on an
NVIDIA A100 GPU. The training time for each case was approxi-
mately 2.5 h. Due to the large number of geological models (8000
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Fig. 23. Schematics showing K*
rw;x , K

*
rg;x , K

*
rw;z , and K*

rg;z samples with P90 MSE error in the validation set.

Fig. 24. Box plots showing the relative errors of gas phase and water phase flow rates at the producer for traditional and DL-based upscaling models.
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Fig. 25. Gas flow rate samples with relative errors of P90, P75, P50, and P25.
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per case) and the complexities associated with simulation time
(e.g., time-step cutting and Newton iteration convergence, etc.),
accurately measuring the computation time for each model is
challenging. Therefore, we estimate themean computation time for
a single model.

Table 3 presents the mean computation time for single fine- and
coarse-scale models. The fine-scale model serves as the baseline,
with a time cost of 2000 s. The traditional upscaling model includes
two components: upscaling computation taking 1700 s and coarse-
scale simulation taking 5 s, with a total time of 1705 s and a
speedup factor of 1.17. As described in Section 2, this traditional
upscaling method requires solving flow equations over the global
domain, which is highly accurate but does not provide high
speedup factors. Therefore, its application is often limited to sce-
narios that require repeated use of coarse-scale models (e.g., his-
tory matching or optimization). In contrast, our DL-based upscaling
model demonstrates significant efficiency, with a time cost of only
1.5 s for predicting all the upscaling parameters, approximately
1133 times faster than traditional upscaling computation. The
model achieves a total time cost of 6.5 s and an impressive speedup
factor of 307.69.
1730
7.2. Accuracy improvement

Next, we further discuss the accuracy improvement achieved by
DL surrogate models. As we know, DL surrogate models typically
introduce some degree of error due to their inherent nature.
However, our DL-based upscaling models are able to demonstrate
improved accuracy in simulation results compared to the tradi-
tional upscaling methods. This improvement occurs because the
surrogate models are trained using local information, and a
considerable portion of inaccurate upscaled parameters are elimi-
nated through preprocessingmethods (detailed in Section 5.2). As a
result, we construct high-quality datasets that further enhance the
capabilities of the surrogate models. These surrogate models cor-
rect inaccurate data through their generalization ability, leading to
improved simulation results for DL-based upscaling models.

An additional finding is that the prediction performance of the
relative permeability-related surrogate models declines in the non-
primary flow direction, further indicating that weak flow tends to
cause inaccurate upscaled data. In traditional upscaling procedures,
inaccurate upscaled parameters are usually not feasible to address.
Although replacement data are calculated to replace some
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Fig. 26. Water flow rate samples with relative errors of P90, P75, P50, and P25.

Fig. 27. Box plots showing the relative errors of gas saturation and pressure fields for traditional and DL-based upscaling models.

Y.-J. Wang, Y. Jin, B.-T. Lin et al. Petroleum Science 22 (2025) 1712e1735

1731

mailto:Image of Fig. 26|tif
mailto:Image of Fig. 27|tif


Fig. 28. Gas saturation field sample with relative error of P90.

Fig. 29. Gas saturation field sample with relative error of P50.
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Fig. 30. Pressure field sample with relative error of P90.

Table 3
Mean computation time for single fine- and coarse-scale models.

Model Time cost, s Total time cost, s Speedup factor

Fine-scale model Fine-scale simulation 2000 2000 e

Traditional upscaling model Upscaling computation 1700 1705 1.17
Coarse-scale simulation 5

DL-based upscaling model DL-based upscaling 1.5 6.5 307.69
Corse-scale simulation 5
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inaccurate (i.e., unphysical) upscaled parameters, as described in
Section 2.2, these replacement data are still inaccurate. Our DL
methods offer a potential solution for improving inaccurate data
generated by flow-based upscaling.
8. Conclusions and future work

In this paper, we develop a DL-based upscaling method for CO2

injection into saline aquifers. We consider full-physics geological
models that incorporate mutual solubility of CO2 and brine, salt
precipitation, relative permeability hysteresis, gravity, compress-
ibility of rock and fluids, and capillary heterogeneity. The upscaling
procedure consists of global flow-based methods for trans-
missibility, well index, and relative permeability, along with a
steady-state method for capillary pressure. Surrogate models are
constructed for these upscaled parameters by integrating CNN,
Transformer encoder, and FNO architectures. These surrogate
models are trained using local information, with preprocessing
procedures to address inaccurate upscaled parameters generated
1733
during the flow-based upscaling processes.
Eight different types of permeability fields including 8000

models were generated. Two cases were presented using these
models with flow patterns of left-to-right and bottom-to-top,
respectively. In each case, 40% of the models were allocated to
the training set, 10% to the validation set, and 50% to the test set.
After the training process, the validation set is used to evaluate the
DL predictions. The results indicate that the surrogate models can
accurately predict most upscaled parameters (i.e., upscaled trans-
missibility, well index, capillary pressure, and relative permeabil-
ities in primary flowdirection). However, the prediction of upscaled
relative permeabilities in the non-primary flow direction is less
accurate due to noise data caused by weak flows. Nevertheless, the
error in the non-primary flow direction has a limited impact on the
final simulation results.

The trained surrogate models were then employed to perform
upscaling on the test set. A key finding is that the DL-based
upscaling models can improve the accuracy of simulation results
compared to traditional upscaling models. This improvement

mailto:Image of Fig. 30|tif
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occurs because the surrogate models are trained using a high-
quality training set constructed through our preprocessing pro-
cedure, making their predictions more accurate than the inaccurate
upscaled parameters generated by traditional upscaling. Addi-
tionally, as expected, the DL-based upscaling achieves significant
speedup factors, with upscaling accelerating approximately 1133
times compared to traditional upscaling, and the total time accel-
erating by 307.69 times compared to fine-scale simulation.

There are still several topics that should be considered in future
research. First, the current study concentrates on the CO2 injection
stage. Future work should further incorporate post-injection pro-
cesses, such as residual gas trapping and mineral trapping, into the
upscaling method and DL models. Second, although two-
dimensional geological models with isotropic rock properties and
constant porosity are employed for computational efficiency, they
do not adequately represent subsurface formations. Future work
should expand both the geological models and the DL-based
upscaling approach to more realistic three-dimensional scenarios.
Third, to simplify the problem, this study does not incorporate a
comprehensive range of parameters in the geological models, such
as reservoir conditions, geological model types, rock properties,
and well configurations. In future work, a more comprehensive set
of such parameters should be considered to enhance the general-
ization ability of DL models. Finally, the application of the DL-based
upscaling method to realistic cases should be pursued.
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