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a b s t r a c t

Rate of penetration (ROP) is the key factor affecting the drilling cycle and cost, and it directly reflects the
drilling efficiency. With the increasingly complex field data, the original drilling parameter optimization
method can't meet the needs of drilling parameter optimization in the era of big data and artificial in-
telligence. This paper presents a drilling parameter optimization method based on big data of drilling,
which takes machine learning algorithms as a tool. First, field data is pre-processed according to the
characteristics of big data of drilling. Then a formation clustering model based on unsupervised learning
is established, which takes sonic logging, gamma logging, and density logging data as input. Formation
clusters with similar stratum characteristics are decided. Aiming at improving ROP, the formation
clusters are input into the ROP model, and the mechanical parameters (weight on bit, revolution per
minute) and hydraulic parameters (standpipe pressure, flow rate) are optimized. Taking the Southern
Margin block of Xinjiang as an example, the MAPE of prediction of ROP after clustering is decreased from
18.72% to 10.56%. The results of this paper provide a new method to improve drilling efficiency based on
big data of drilling.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Oil and gas drilling engineering is challenged by increased well
depth, increased operation difficulty, and more complicated
geological environment. It becomes more important to improve the
drilling efficiency. Improving the rate of penetration (ROP) and
reducing the drilling cycle are the most direct and effective ways to
enhance drilling efficiency (Wang and Guang, 2022; Li et al., 2020).
The drilling process is a complex process influenced by many fac-
tors, which can be divided into controllable factors and uncon-
trollable factors. Controllable factors (such as weight on bit (WOB),
revolution per minute (RPM), standpipe pressure (SPP), flow rate,
drilling fluid density, etc.) have considerable influence on ROP. Most
of the previous drilling parameter optimization methods rely on
Peng), zhanghonglin_0503@
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empirical methods, where the drilling parameters are optimized by
establishing empirical ROP prediction models through drilling data
or experiments (Pessier, 1992; Rashidi, 2010; Cherif, 2012). The
established models are closely related to drilling methods, rock
breaking tools, drilling parameters, and rock mechanic parameters.
However, many model parameters are difficult to accurately obtain,
resulting in poor applicability of the models. With the complex
drilling environment and massive drilling data, it is inefficient and
difficult for conventional methods to meet the demand.

There are currently three main drilling parameter optimization
methods (Cui et al., 2015; Huang and Gao, 2022; Sehsah et al., 2017;
Hutchinson et al., 2018; Khadisov et al., 2020; Cayeux et al., 2019;
Xiong et al., 2023; Hamzah et al., 2019; Armenta, 2008): 1) Opti-
mization of drilling parameters based on mechanical specific en-
ergy (MSE); 2) Optimization of drilling parameters based on ROP; 3)
Optimization of drilling process based on intelligent drilling sys-
tem. The optimization of drilling parameters based on MSE is the
most widely used. For example, Waughman et al. (2002) evaluated
PDC bit wear in real-time by comparing the MSE values of new bits
under the same conditions. Dupriest (2006) evaluated drilling
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efficiency based on MSE, and identified the causes of drill bit and
system inefficiency. Rafatian et al. (2010) established a MSE model
in high pressure and low permeability formation. Islam et al. (2018)
discussed drilling problems encountered in granite and geothermal
reservoirs by using the MSE model. Alsubaih et al. (2018) summa-
rized the correlation betweenMSE and ROP, productivity, and other
parameters by statistical analysis methods.

Since Teale (1965) first put forward the idea of MSE, various
models have been established through continuous revision and
improvement. Mohan and Adil (2009) proposed a new correlation
for identifying inefficient drilling conditions based on MSE. Alali
et al. (2012) studied the influence of axial vibration of drill string
on ROP based on MSE. Meng et al. (2012) established a rock-
breaking specific energy model under the condition of hydraulic
parameters by analyzing the positive effect of hydraulic energy on
rock-breaking and bottom hole cleaning based on the original
specific energy theory of rock-breaking machines. Cui et al. (2014)
brought about the theory of optimizing drilling parameters by
MSE under the condition of compound drilling. Pinto and Lima
(2016) presents a new real-time analysis of geomechanics capa-
bility based on MSE to optimize energy consumption and ROP in
salt-layer drilling. Al-Sudani (2017) developed a model for pre-
dicting drilling performance by analyzing the real-time trans-
mission drilling mechanical energy consumed by the drill bit.
However there are many uncertainties in the existing drilling
parameter optimization methods, and the uncontrollable factors
such as formation rock characteristics and the big data of drilling
are not fully considered.

Artificial intelligence and big data technology have the advan-
tage of efficiently and quickly mining the deep hidden information
in the drilling data, which is able to discover the trends ignored by
the traditional theoretical models (Pang et al., 2023; Noshi, 2019;
Pei et al., 2024; Chris, 2021; Zhang et al., 2021; Chen et al., 2023;
Deng et al., 2023; Elmgerbi et al., 2021). In this work, the unsu-
pervised learning is used in this paper to extract formation features
in big data of drilling, and the drilling parameters are optimized
through the established ROP prediction model.

2. Methodology

Fig. 1 is the frame of the ROP prediction model based on big data
of drilling. The drilling data collected include well logging and mud
logging data, which are processed through data cleaning, normal-
ization, and dimension reduction. In formations with similar rock
characteristics, the influence of drilling parameters on ROP is also
similar. Therefore, taking sonic logging, density logging, and
gamma ray logging data as input, formations with similar charac-
teristics are classified into one cluster, and the cluster results pro-
vide a new feature parameter. Then, the ROP prediction model is
established with formation cluster, WOB, RPM, flow rate, SPP, tor-
que, drilling fluid density, and bit type as input parameters. Finally,
the influence of different parameter combinations on ROP is
analyzed through the established ROP prediction model to opti-
mize drilling parameters.

2.1. Drilling data of southern margin block

The Southern Margin block is located in Junggar Basin, Xinjiang,
China. The deep formation (vertical depth greater than 5000m) has
the characteristics of high rock compressive strength and poor
drillability. Therefore, the ROP in deep formations is low and the
drilling operation consumes more time than expected. The typical
geological stratifications and well structure of the target reservoir
are illustrated in Fig. 2. The combined strata in the southern margin
are mainly mudstone, argillaceous siltstone and silty mudstone,
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with dense lithology and strong plasticity, which makes it difficult
for bit cutting and drilling. According to the field data (Table 1), the
average designed well depth in this area exceeds 6700 m, the
average drilling cycle is 392 days, and the average ROP of deep
formation is less than 2 m/h.

Data of 112,781 points from 15 wells (G101, G102, G103, etc.) in
the Southern Margin block of Xinjiang are collected as the original
field data. The data contains the complete geological formations in
this area. Part of the data are shown in Table 2.
2.2. Pre-processing of big data of drilling

Big data of drilling is extracted and collated from different tool
systems (such as logging while drilling, wire logging, geological
logging, etc.), with complex types and huge quantities, so it is
necessary to preprocess big data of drilling. Firstly, data cleaning is
performed. The wrong and conflicting data are removed. The
abnormal point refers to the unreasonable point in the drilling data
set. Abnormal points include outliers, high leverage points, and
strong influence points, all of which may cause serious deviation in
data fitting and analysis during machine learning. Because the
abnormal point can't be directly used, and the proportion of
abnormal points is generally small, it has little impact on the scale
of the data set. Therefore, abnormal points are directly deleted (Guo
and Zhou, 2002).

In this paper, the box-plot is used to detect outliers. As shown in
Fig. 3, the lower quartile (Q1) and the upper quartile (Q3) represent
the data in 25% and 75% of the samples, respectively. The median
quartile (Q2) is the data in 50% of the samples. The upper and lower
bounds are the threshold values for determining outliers.

X <Q1 � 1:5� IQR or X >Q3 þ 1:5� IQR (1)

where X represents the outliers. IQR is the interquartile spacing,
which is the difference between Q3 and Q1.

Furthermore, the Savitzky-Golay (SG) filter is employed to
denoise the drilling data. The SG filter is a filtering method that
achieves local polynomial fitting through least squares convolution,
which can remove noise while preserving the shape and width of
the signal. The principle of SG filter is shown in Eq. (2).

S*j: ¼

Pm
i¼�m

CiSj:þ1

N
(2)

where S is the original signal. S* is the signal after noise reduction.
Ci is the noise reduction coefficient of the i-th time. N is the sliding
windowwidth of (2mþ 1) groups of data. j. is the j-th sample in the
sample set.

Sometimes data sets contain non-operational data, which are
called discrete features. In this way, it is necessary to transcode the
non-operational data. The discrete features in drilling data mainly
include formation and bit type. The values of these non-operational
data need to be transferred as digital values. This paper uses vectors
to encode non-operational feature values. For example, the for-
mation can be defined by a binary numerical vector, as shown in
Table 3.

The bit type is a kind of datawith non-numerical characteristics.
The different categories (PDC bit and Tri-Cone bit) contained in this
feature parameter are in a parallel relationship without ordinal
meaning. Therefore, one-hot encoding is used to transform bit type,
making which suitable as input variables for the model. The
encoded results are shown in Table 4.

There are multiple feature parameters in the drilling data, and
the range of each feature parameter is quite different. Therefore, it
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Fig. 2. Typical geological stratifications and well structure in the target reservoir.
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is necessary to normalize the data, eliminate the influence of di-
mensions, and make all data indicators comparable. This paper
Table 1
Drilling cycle and average ROP of typical wells in Southern Margin block of Xinjiang.

Well Well depth, m Range of deep formation, m

G101 7000 5900e7000
G102 6100 5600e6100
GQ5 6346 5951e6546
GQ6 6650 6181e6806
HT1 7601 5700e7601
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adopts the Min-Max normalization, and the conversion function is:

x*ij ¼
xij �Minj

Maxj �Minj
ði ¼ 1;2;3;…; j ¼ 1;2;3Þ (3)

Fig. 4 shows the distribution of compressive strength and shale
content before and after normalization. Without dimensional
processing, the drilling parameters may be over-fitted, which will
affect the prediction accuracy of ROP.

Besides, this paper adopts the popular data dimension reduction
method of Principal Component Analysis (PCA). Through linear
projection, the high-dimensional data is mapped into the low-
dimensional space. With the larger variance of data on the pro-
jected dimension, fewer data dimensions are achieved (as shown in
Fig. 5), which facilitate the training of ROP model.
2.3. Formation clustering based on unsupervised learning

Optimization of drilling parameters should be based on the
matching relationship between drilling parameters and formation
rock characteristics. For formations with similar rock characteris-
tics, the influence of drilling parameters on ROP is similar. It is
difficult to label complex and diverse formation characteristic pa-
rameters by establishing complicated standards. Unsupervised
learning can be used to extract, screen and classify the features of
Average ROP in deep formations, m/h Drilling cycle, d

1.21 395
1.99 347
0.98 405
2.88 197
1.41 453



Table 2
Part of the field data (drilling data of well G101 from 3476 to 3513 m).

# TVD, m Drilling time, min/m WOB, kN Torque, kN$m RPM, r/min SPP, MPa Mud inlet density, g/cm3 AC GR DEN

G101 3476 72.2 0.98 1 90 3.76 1.04 69.51 57.001 2.474
G101 3477 10.6 0.99 2 90 7.95 1.04 69.127 56.8 2.478
G101 3478 4.6 0.99 1 90 6.45 1.04 68.772 56.563 2.48
… … … … … … … … … … …

G101 3483 2.8 0.98 2 90 3.73 1.04 66.327 54.586 2.486
G101 3484 2.8 0.98 5 90 4.71 1.04 66.233 54.959 2.491
G101 3485 5.2 0.98 2 90 5.36 1.04 66.311 56.072 2.498
… … … … … … … … … … …

G101 3490 3.9 1 5 120 8.29 1.04 69.853 70.649 2.521
G101 3491 2.8 0.99 5 120 9.14 1.04 69.717 72.863 2.518
G101 3492 3.4 0.99 4 120 6.7 1.04 69.223 73.476 2.52
… … … … … … … … … … …

G101 3497 3.3 0.99 6 120 6.84 1.04 63.627 56.712 2.53
G101 3498 3.3 1 3 150 6.49 1.04 62.501 53.655 2.521
G101 3499 2.7 0.99 3 150 7.1 1.04 62.176 51.786 2.52
… … … … … … … … … … …

G101 3511 3.7 0.98 5 150 9.5 1.04 62.546 65.707 2.565
G101 3512 2.6 0.99 7 150 7.38 1.04 62.26 67.406 2.572
G101 3513 5 0.99 5 150 4.95 1.04 61.931 69.026 5.576

Q1

Q3

Q2

The upper bound

The lower bound

Outlier

Outlier

Fig. 3. Schematic diagram of box-plot.

Table 3
Example of independent transcoding of formation.

Well depth, m Formation

Q N2d N1t K1tg J2t J2x J1b

543 1 0 0 0 0 0 0
1495 0 1 0 0 0 0 0
2019 0 1 0 0 0 0 0
3257 0 0 1 0 0 0 0
3894 0 0 1 0 0 0 0
5962 0 0 0 1 0 0 0
6050 0 0 0 0 1 0 0
6470 0 0 0 0 0 1 0
6905 0 0 0 0 0 0 1

Table 4
Example of one-hot encoding of bit types.

Well depth, m Bit type

Tri-Cone PDC

200 1 0
400 1 0
600 1 0
800 1 0
1000 1 0
1200 1 0
1400 0 1
1600 0 1
1800 0 1
2000 0 1
… … …
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unlabeled geological data of formation.
The complexity of formation requires multiple indicators to

reflect the characteristics of formation. These features reflect the
formation properties from different aspects, and each index has
different emphases. According to the theory, the properties of rocks
are closely related to the logging data. For example, acoustic time
difference can reflect the tensile and compressive deformation
characteristics and strength characteristics of rocks. The gamma ray
can reflect the shale content and plasticity, the density logging can
show the compaction degree of the rock, and the resistivity
represent the compactness of the rock (Dong et al., 2022; Liang
et al., 2006). Therefore, this paper takes three kinds of major log-
ging data, namely density logging, gamma ray logging and sonic
logging, as feature parameters characterizing the formation rock
properties.

Cluster algorithms mainly include the K-means method and the
Mean-shift method. Big data of drilling has the characteristics of
multiple features and large quantity, so this paper uses the K-means
method for clustering (Wang et al., 2018; Jing, 2019; Hou, 2018).
The essence of the K-means method is to cluster a given unlabeled
1599
data set X into k (k < m) clusters (C1, C2, …, Ck):

X ¼

2664
xð1Þ
xð2Þ
«
xðmÞ

3775; xðiÞ2Rn (4)

Fig. 6 is the flow chart of the K-means method. The K-means
method needs to specify the value of k in advance, and the elbow
method and contour coefficient method are used to determine the
best k.

The key index of elbow method is the sum of squares due to
error (SSE), which represents the sum of squares of the distance
from the point of each cluster to the center of that cluster (Eq. (5)).
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SSE¼
Xk
i¼1

X
p2cðiÞ

jp�mij2 (5)

When SSE drops suddenly and slowly, the k at the turning point
is the best cluster number. As shown in Fig. 7, when the value of k is
less than 4, the SSE obviously decreases with the increase of k,
which indicates that the clustering effect is prominent. When k is
greater than 4, the further reduction of SSE becomes unapparent, so
k ¼ 4 is the best cluster number in this case.

However, the elbow method may fail. As shown in Fig. 8, if SEE
gradually decreases with the increase of k, it is difficult to find the
turning point k for the best cluster number. Under such circum-
stance, the contour coefficient method is used as an auxiliary
method to locate the optimal cluster number k.

The key index of contour method is the contour coefficient,
which describes the clarity of contour between clusters after
clustering. The calculation formulas are shown in Eqs. (6)e(9). The
larger the contour coefficient, the better the clustering effect. In
practical application, the elbow method is preferred to judge the
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Fig. 8. Invalid judgment of elbow method (example).
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optimal cluster number, while the contour coefficient method is
used for auxiliary verification. If the conclusions obtained by elbow
method and contour coefficient method are inconsistent, the result
of contour method should be used as the final value.

SðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ;bðiÞ g ¼

8>>>>>><>>>>>>:

1� aðiÞ
bðiÞ; aðiÞ<bðiÞ

0; aðiÞ ¼ bðiÞ
aðiÞ
bðiÞ � 1; aðiÞ>bðiÞ

(6)

ai ¼
1

n� 1

Xn
jsi

distanceði; jÞ (7)

bi ¼
1

n� 1

Xn
jsi

distanceði; jÞ (8)

S¼1
n

Xn
i¼1

SðiÞ (9)

The purpose of formation clustering is to classify formations
with similar rock characteristics into the same cluster. The ampli-
tude A, standard deviation s, and variation coefficient V are used to
describe the similarity of data sets:

A ¼ Max�Min
Min

(10)

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðXi � XÞ2

m

vuuut
(11)

V ¼ s

X
(12)

2.4. Intelligent prediction model of ROP

At present there are two ways to build prediction methods of
ROP: 1) Establishing a multivariate equation about ROP through a
mathematical model, and predicting ROP by obtaining equation
parameters; 2) Using the algorithm model where the ROP is pre-
dicted by data fitting. The second method has been greatly devel-
oped with the development and popularization of big data
technology. To optimize drilling parameters, it is necessary to
analyze the complicated drilling data and select the drilling pa-
rameters which are more favorable for the prediction of ROP.

As shown in Fig. 9, the data affecting ROP mainly include me-
chanical parameters (WOB, RPM, torque), hydraulic parameters
(flow rate, SPP), drilling fluid properties, drill assembly (drill bit,
speed-up tools), rock properties (Wang and Guang, 2022; Li et al.,
2020; Pessier, 1992). The rock characteristics can be represented
by logging data. According to the correlation coefficient between
ROP and drilling data (Fig. 10), hook height barely has any corre-
lation with ROP and other parameters. Well depth, mud tempera-
ture, and mud conductivity only have weak correlation (<0.6) with
ROP. Hook weight has a strong correlationwith ROP but it is similar
as WOB. On the other hand, WOB, RPM, SPP, torque, flow rate,
drilling fluid density, and borehole diameter are highly correlated
to ROP (correlation coefficient>0.6). Therefore in this paper, for-
mation clusters, WOB, RPM, SPP, torque, flow rate, drilling fluid
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density, bit type and borehole diameter are selected as input pa-
rameters of the ROP prediction model.

Artificial Neural Network (ANN) is a kind of analog logic algo-
rithm that simulates human brain neurons to transmit and convert
information cooperatively. ANN has many advantages, such as
adaptability, generalization and easy realization, and is suitable for
fitting drilling data and predicting ROP. The early ANN model is
extremely difficult to train because of its unique structure. After the
network circulates many times, in most cases, the problem of
gradient disappearance or gradient explosionwill occur, that is, the
network training has not reached the pre-set conditions and has to
be terminated in advance. The appearance of the Long Short Term
Memory Network (LSTM) and Grated Recurrent Unit Network
(GRU) solved the problem of gradient explosion (Gao et al., 2021).
Recurrent neural network (RNN) has become a mature machine
learning algorithm. The LSTM, as an improved model of RNN,
makes up for some problems, but its neuron structure is too
complicated and its operation process is complicated. GRU sim-
plifies the network structure on the basis of LSTM, improves the
operation speed, and solves the over-fitting problem of LSTM.
Therefore, in this paper, GRU is selected to predict ROP.

Fig. 11 shows the structure of neurons in the hidden layer of GRU
network (Aemail et al., 2022). The final output value and signal
output ht calculated by this neural network are as follows:

ht ¼ð1� ztÞ�ht�1 þ zt � ~ht (13)

zt ¼ s0
�
Wz$½ht�1; xt � þ bf

�
(14)

rt ¼ s0ðWr$½ht�1 ; xt � Þ (15)

~ht ¼ tanhðW~h � ½rt $ht�1; xt � þ b~hÞ (16)

where zt refers to the update gate. ht�1 refers to the output signal of
a neuron on the same layer. ht is the output signal of this neuron. xt
refers to the input of this neuron. Wz refers to the weight of the
update gate. s0 refers to sigmoid function. rt is the reset gate. Wr

refers to the weight of the reset gate. ~ht is a pending output value.
W~h refers to theweight of the pending output value. b~h refers to the
compensation value of the pending output value.

Although the increase in the number of hidden layers may be
more conducive to calculation, it also increases the complexity of
the network and reduces the efficiency of the algorithm, making it
more prone to over-fitting. Therefore, to prevent over-fitting caused
by too many hidden layers, the number of hidden layers is set as
1602
one layer.
The determination of the number of neurons in the hidden layer

has always attracted much attention. At present, there is no
rigorous theory to verify the number of neurons in the hidden layer.
The golden section method is the most widely used method (Xia
et al., 2005).

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þ n0

p
þ a0 (17)

where h0 is the number of neurons in the hidden layer. m0 is the
number of neurons in the input layer. n0 is the number of neurons in
the output layer. a0 is the adjustment constant, and its value range is
[1,10].

The root mean square error (RMSE) and the coefficient of
determination (R2) are used to judge the optimal neural network
structure with the average value of multiple calculation results as
the final judgment condition. RMSE is used as the main judgment
index, and R2 is used as the auxiliary judgment index.
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RMSE¼RSS
j

(18)

R2 ¼RSS
SST

(19)

SST ¼
Xj

i¼1

ðYi � YÞ2 (20)

RSS¼
Xj

i¼1

ðbY i � YÞ2 (21)

where Yi is the actual value. Y is the average value. bY i is the fitting
value. SST is the sum of squares of total deviation. RSS is the sum of
regression squares. j is the total number of samples.

The closer the RMSE is to 0, the better the neural network
structure. The closer R2 is to 1, the better the neural network
structure.

According to the golden section method (Eq. (17)), when the
number of neurons in the input layer is 9 and the number of neu-
rons in the output layer is 1, the optimal number of neurons in the
hidden layer ranges from 5 to 14. Table 5 shows RMSE and R2 of GRU
network with different numbers of neurons. It can be found that
when the number of neurons in the hidden layer is 12,
RMSE ¼ 0.179 and R2 ¼ 0.94, and the training effect of the model is
the best, so the number of neurons in the neural network model is
set to 12.

In addition, the batch-size value also has a great influence on the
training model. At present, there is no unified view on the optimal
selection of batch-size value. According to previous studies, batch-
size is set to be less than or equal to 16when the data set is less than
100,000, and set to be 32 or 64 when the data set is more than
100,000. The data sets in this paper are all more than 100,000, so
the batch-size value is initially set to 32. Finally, the ROP prediction
model based on the GRU neural network is constructed (as shown
in Fig. 12). In this study, a training/testing data ratio of 8:2 is used
for the ANN model. The focus is primarily on optimizing the
model's performance with the available data. An unseen dataset
beyond the training and testing data is not included.
0
Blank values Duplicate data Abnormal data

Fig. 13. Amount of invalid data in the original drilling data.

2.5. Evaluation index

The performance of ROP prediction model is evaluated by mean
absolute error (MAE) and mean absolute percentage error (MAPE).
MAE is the absolute error between the predicted ROP ypre and the
actual ROP y, and the formula is as follows:

MAE¼ 1
m

Xm
i¼1

�����yprei � yi

����� (22)

wherem is the number of data points. yprei is the i-th predicted ROP,
m/h. yi is the i-th real ROP, m/h.
Table 5
Error table of GRU neural network in different models.

Number of neurons 5 6 7 8

RMSE 0.34 0.427 0.274 0.255
R2 0.657 0.266 0.82 0.846
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MAPE measures the relative error between ypre and y (Eq. (23)).
Generally, the smaller the MAE and MAPE, the higher the perfor-
mance of the model.

MAPE¼ 1
m

Xm
i¼1

��yprei � yi
��

yi
�100% (23)
9 10 11 12 13 14

0.453 0.342 0.424 0.179 0.187 0.269
0.083 0.676 0.733 0.94 0.938 0.84
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3. Results and discussion

3.1. Preprocessing results of data sets in Southern Margin block

Based on the proposed method, the drilling parameters in the
Southern Margin block are processed. Data sets without data pre-
processing are filled with a lot of vacancy values, duplicate values,
and various abnormal points. The data to be processed is summa-
rized in Fig. 13. There are 1438 blank values, 294 duplicate data, and
4938 abnormal data. Total of 6670 pieces of data will negatively
affect the algorithm operation, accounting for 6.1% (less than 10%)
of the original data set. Thus, direct deletion is adopted to reduce
the impact of invalid data.

Fig. 14 shows the distribution of parameters of data sets with
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Fig. 16. Determination of optimal k: (a) elbow
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well depth before and after deletion of invalid data. The normalized
parameters are more concentrated after deletion, which indicates
that the quality of data sets has been improved.

There are 95,452 data sets after data preprocessing. Fig. 15 is a
three-dimensional scatter diagram of the data set. It can be seen
that most of the data are aggregated to some extent, and a few of
them are scattered. The data set after data preprocessing and
dimension reduction can improve the quality of data processing.
3.2. Cluster analysis results based on formation characteristics in
Southern Margin block

The density logging data, sonic logging data, and gamma logging
data of the Southern Margin block are used as input parameters for
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Table 6
Cluster results of deep formation in Southern Margin block.

Clusters Main geological formation Characteristics o

Cluster 1 K1h (lower part) Compressive stre
K1q (upper part) Compressive stre

Cluster 3 K1l (upper part) Compressive stre
K1q (lower part) Compressive stre

Cluster 4 K1l (middle) Compressive stre
Cluster 6 K1h (upper part) Compressive stre

J3k Compressive stre
Cluster 8 K1h (upper part) Compressive stre
Cluster 9 K1l (lower part) Compressive stre
Clusters 2, 5, 7, 10, 12, 13 Mainly distributed in other upper geological structu
Clusters 11, 14 Scattered distribution and accounting for less than
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cluster analysis. The best range of k judged by elbow method is
12~14 (as shown in Fig. 16(a)). The contour coefficient method is
used as an auxiliary method to verify the elbow method, and the
optimal cluster number is decided to be 14 (Fig. 16(b)).

Fig. 17 shows the distribution of formation clusters in a 3D space
after clustering. The characteristics of formations in the Southern
Margin block are clustered into 14 clusters. Fig. 18 shows the
comparison of the number of data points in each cluster. It can be
seen that the number of data points in each cluster is quite
different. Cluster 12 has the most data points, with 12,753 pieces of
data. Cluster 5 has the fewest data points, with only 2321 pieces of
data.

3.3. Verification of formation cluster

Take the 5700e7601 m deep formation of Well HT1 in the
f rocks Data volumes

ngth is 150e160 MPa, internal friction angle is 31.0e34.6. 3001
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Table 7
Variation coefficient of compressive strength of deep formation in Southern Margin block before and after clustering.

Category Data size Average compressive strength,
MPa

Standard deviation of compressive strength Variation
coefficient

Weight of variation coefficient

Before
clustering

K1l 8268 140.2 9.35 0.06669 0.00944
K1h 18650 134.1 12.84 0.09574 0.03287
K1q 9750 140.9 21.28 0.15102 0.05983
J3k 5744 176.6 14.51 0.08216 0.0036

Weighted average 0.11933

After clustering Cluster 1 4982 138.34 12.01 0.08681 0.02577
Cluster 3 7572 186.13 13.34 0.07167 0.00499
Cluster 4 8763 100.98 11.59 0.11477 0.00291
Cluster 6 7202 149.48 13.23 0.08850 0.01393
Cluster 8 5761 129.79 15.25 0.11749 0.03022
Cluster 9 8132 168.22 16.23 0.09648 0.00754

Weighted average 0.09129
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Southern Margin block as an example, there are four formations:
Lianmuqin Formation (K1l), Hutubi Formation (K1h), Qingshuihe
Formation (K1q), Kalaza Formation (J3k). Table 6 shows the results
of formation cluster.

Fig. 19 shows the clustering results of each data point in the
deep formation. The depth of Lianmuqin Formation ranges from
5700 to 6062 m, with a total of 362 data points. Cluster 3, cluster 4,
and cluster 9 include the most data, about 91%. Thus, Lianmuqin
Formation is separately classified into cluster 3, cluster 4, and
cluster 9 to optimize drilling parameters. The depth of Hutubi
Formation ranges from 6062 to 7203 m. Cluster 1, cluster 6, and
cluster 8 account for the most data, about 95%. Therefore, Hutubi
Formation is classified into cluster 1, cluster 6, and cluster 8. The
depth of Qingshuihe Formation ranges from 7203 to 7408 m, and
cluster 1 and cluster 3 account for the most data, about 79%. So
Qingshuihe Formation is classified into cluster 1 and cluster 3. The
well depth of Kaladza Formation ranges from 7408 to 7601 m.
Cluster 6 accounted for 59% of data points, and none of the other
cluster data points exceeded 10%. Therefore, Kaladza Formation
belongs to cluster 6.

Table 7 shows the standard deviation and variation coefficient of
deep formation in the Southern Margin block before and after
clustering. The weighted average variation coefficient of each for-
mation represents the dispersion degree of formation characteris-
tics. It can be found that the weighted average variation coefficient
of formation before clustering is 0.11733, which is greater than 0.1,
and it is classified as medium variation. After clustering, the
weighted average variation coefficient of formation is 0.09129,
which is a statistically weak variation degree. Theweighted average
variation coefficient decreases by 30.8%. The results show that the
data of the same cluster is more concentrated after clustering, and
the rock characteristics of the same cluster are more similar. The
influence of formation rock characteristics on ROP can be regarded
as the same in the same cluster. Thus, it can potentially improve the
accuracy of the prediction of ROP.
Table 8
The MAE and MAPE of the prediction results of two ROP prediction methods.

Evaluation index Cluster Prediction

1 3 4 6 8 9

MAE 0.43 0.49 0.51 0.48 0.58 0.47 0.49
MAPE 9.12% 10.12% 11.45% 10.34% 12.06% 10.05% 10.56%
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3.4. Influence of formation cluster on ROP prediction model

Previous researches on ROP prediction by neural networks
usually utilize the feature parameters in a direct way. That is, the
models take all the drilling and logging parameters as input. This
paper uses the clustering algorithm to cluster the formations, and
distinguishes the data points with different geological features.
Furthermore, the cluster results are used as one of the input pa-
rameters for the ROP prediction model. In this way, the geological
factors on ROP is considered, which ensures the accuracy of ROP
model with less feature parameters than the direct way. The major
difference between previous and present models lies in whether
the formation cluster is used as an input parameter of the ROP
prediction model.

The ROP of 5700e7601 m in Well HT1 is predicted by the two
methods. The data set contains 1901 pieces of data and is divided
into 6 clusters. Both methods adopt the same GRU neural network
structure and change the number of neurons in the hidden layer to
get the best result. Table 8 shows the MAE and MAPE of the pre-
diction results of two ROP prediction methods. As can be found, for
the prediction results of the six clusters, the MAE ranges from 0.43
to 0.58, and the MAPE ranges from 9.12% to 12.06%. The MAE and
MAPE of the ROP prediction results based on the clustering results
(as shown in Fig. 20) are 0.49 and 10.56% respectively. For the
prediction of ROP with all parameter input, theMAE is 0.82, and the
of ROP based on clustering results Prediction of ROP with all parameters input

0.82
18.72%



Table 9
Optimized drilling parameters.

Cluster Optimal value of drilling parameters

WOB, kN RPM, r/min Flow rate, L/s SPP, MPa

1 150e160 100e120 18e20 35e38
3 140e160 220e240 18e20 35e38
4 140e160 220e240 20e25 35e38
6 60e80 220e240 20e25 35e38
8 30e50 220e240 22e25 35e40
9 140e160 100e120 22e25 30e32

C. Peng, H.-L. Zhang, J.-H. Fu et al. Petroleum Science 22 (2025) 1596e1610
MAPE is 18.72%.
TheMAPE of prediction of ROP after clustering is decreased from

18.72% to 10.56%, which indicates that the similarity of formation
and rocks in a cluster is high. Therefore, the method adopted in this
paper improves the accuracy of ROP prediction.

3.5. Field application scenario of the model

The model can be utilized for both predrilling design and real-
time optimization of drilling parameters. By collecting mud log-
ging and formation logging data from drilled wells in the target
block, the ROP model can be effectively trained and tested. This
allows to identify optimal drilling parameters (WOB, RPM, flow
rate, and SPP) tailored for each formation cluster in the predrilling
design. For real-time optimization, real-time mud logging and
downhole logging data can be used as model inputs to determine
the most favorable drilling parameters dynamically.

It is noted that the present ROP optimization method includes
mud logging and downhole data as inputs. Although these data are
fully available in the Southern Margin block of Xinjiang, these in-
puts are not always available in every well since many companies
drop them to save cost except for few logging parameters such as
Gamma Ray. The use of mud logging data requires a full circulation
which is not guaranteed in every well or section. The use of
downhole logging is mainly attributed with the reservoir section to
land the well properly. In this case the ROP is controlled to preserve
the logging quality andmitigate the chance of having a poor logging
data. Also, the placement of logging tools is far behind the bit which
creates a lag in the model epically if a new formation is
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encountered and the model needs to await that formation to pass
by the logging tool and identify it.

For cases where downhole logging data are not available in a
certain well, the logging data from neighboring wells in the same
geological structure can be used as substitution. In the Southern
Margin block of Xinjiang, the mud logging data are recorded in ever
30 s. Ideally, the drilling fluid density can be provided in a real-time
manner, along withWOB, RPM, SPP, torque, and flow rate. If drilling
fluid density is not provided in real-time, the drilling density can be
decided according to the drilling fluid density of drilling design at
the specific measure depth. In this study, we focus on an all-in-one
model to demonstrate the feasibility of integratingmultiple drilling
parameters into a cohesive framework. However, it is acknowl-
edged developing separate models for different well-bore section/
size has the potential benefits of reducing model inputs (especially
bit size, formation type, and bit type). Moving forward, we will
consider this approach in future research to further refine our
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Table 10
Comparison of drilling parameter optimization results between MSE and big data analysis.

Formation Parameters of big data training optimization Parameters recommended by MSE

WOB, kN RPM, r/min Flow rate, L/s SPP, MPa Drilling mode WOB, kN RPM, r/min Flow rate, L/s SPP, MPa Drilling mode

K1l (upper part) 140e160 220e240 18e20 35e38 Composite drilling 70e80 70e90 18e20 30e32 Torsional impact
K1l (middle) 60e80 220e240 20e25 35e38 Composite drilling
K1l (lower part) 140e160 100e120 22e25 30e32 Conventional drilling

K1h (upper part) 30e50 220e240 18e20 35e38 Composite drilling 60e80 140e160 25e27 34e36 Composite drilling
K1h (middle) 60e80 220e240 20e25 35e40 Composite drilling
K1h (lower part) 150e160 100e120 22e25 35e40 Conventional drilling

K1h (upper part) 150e160 100e120 18e20 35e38 Conventional drilling 40e60 140e160 16e18 30e32 Composite drilling
K1h (lower part) 140e160 100e120 18e20 35e38 Conventional drilling

J3k 60e80 220e240 20e25 35e40 Composite drilling 50e55 60e90 16e18 36e38 New tools
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models and enhance predictive performance.
4. Optimization of drilling parameters in Southern Margin
block

4.1. Optimization of drilling parameters (5700e7601 m deep
formation)

After the ROP model is trained and tested, the influence of
different parameter combinations on ROP is analyzed to optimize
the drilling parameters. As in Section 3.3, take the 5700e7601 m
deep stratum of Well HT1 in the southern margin as an example.
The drilling parameters (WOB, RPM, SPP, flow rate) are optimized
based on the parameter combination to obtain the maximum ROP.

Fig. 21 shows the effects of different parameter combinations on
ROP in cluster 1. As can be seen, the normalized average ROP of all
data points in cluster 1 under different WOB and RPM (as shown in
Fig. 21(a)), which reflects the relationship between ROP and me-
chanical parameters in cluster 1. It can be seen that when WOB is
constant, increasing RPM has no obvious change in ROP, but when
MSE ¼ EfW

"
4

pD2
b

þ 0:16mðqnþ 60QÞ
Dbv

#
¼ EfW

"
4

pD2
b

þ 0:16mðqnþ KNQÞ
Dbv

#
(24)
RPM is constant, increasing WOB will increase ROP. Therefore, the
formation in cluster 1 is suitable for the parameter combination of
highWOB and proper RPM. It is recommended that WOB should be
150e160 kN and RPM should be 100e120 r/min. The conventional
drilling methodwith no PDM (positive displacementmotor) should
be adopted. Fig. 21(b) shows the variation coefficient of the
normalized ROP of each point in cluster 1 at different WOB and
RPM. It can be seen that the coefficient of variation under most
parameter combinations is less than 0.1, and only a few are greater
than 0.2. The average coefficient of variation under each parameter
combination is 0.0871, which is a weak variation, indicating that
different WOB and RPM have similar influence on the ROP of each
data point in cluster 1. Fig. 21(c) is the normalized average ROP of
each data point of cluster 1 under different flow rate and SPP,
reflecting the relationship between ROP of each data point of
cluster 1 and hydraulic parameters. It can be seen that the combi-
nation of high SPP and appropriate flow rate can achieve higher
ROP. Therefore, the recommended flow rate should be 18e20 L/s
and the SPP should be 35e38 MPa. Fig. 21(d) shows the variation
coefficient of the normalized ROP of each point in cluster 1 under
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different flow rate and SPP. It can be seen that the coefficient of
variation under most parameter combinations is less than 0.1, and
only a few are greater than 0.2. The average coefficient of variation
under each parameter combination is 0.0643, which is a weak
variation, indicating that different flow rate and SPP have similar
influences on ROP.

Similarly, the optimized drilling parameters of cluster 3, cluster
4, cluster 6, cluster 8 and cluster 9 can be obtained through analysis,
as shown in Table 9.
4.2. Comparison with MSE

At present, the optimization of drilling parameters based on
MSE is the most widely used. In recent years, scholars have
continuously optimized and improved the Teale model, and many
new models have been formed on this basis, such as the Armenta
model, Rashidi model, Mohan model and MSE model under com-
pound drilling conditions (Eq. (24)). In this paper, the research
focus is not on the MSE model, so it is not detailed.
This section aims to compare the proposed intelligent optimi-
zation method of drilling parameters with MSE method. Take the
5700e7601 m deep formation in the Southern Margin of Well HT1
as an example. The optimization results of drilling parameters of
deep formation in the Southern Margin block obtained by MSE and
big data analysis are shown in Table 10.

In the table, composite drilling refers to adding a PDM in bottom
hole assembly, and torsional impact refers to adding a torsion
impactor in bottom hole assembly. It should be noted that drilling
parameters optimization model based on big data re-divides the
formation, so that drilling parameters can be optimized in a more
delicate way for each formation. On the other hand, the MSE model
used to optimize hydraulic parameters has many parameters that
are difficult to obtain directly, so it is difficult to optimize hydraulic
parameters. The drilling parameter optimization model based on
big data machine learning can fully combine drilling data to opti-
mize hydraulic parameters.
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5. Conclusions

This paper establishes a drilling parameter optimizationmethod
based on big data of drilling and machine learning, and optimizes
the drilling parameters in drilling of deep formations at the
Southern Margin block of Xinjiang. The main conclusions are as
follows:

(1) A clustering model of formation features based on the K-
means algorithm is established. Elbow method and contour
coefficient method are used to decide the best cluster
number. The cluster data of the 5700e7601 m deep forma-
tion of Well HT1 in the Southern Margin block shows that
each cluster has more uniform formation and rock
characteristics.

(2) TheMAE andMAPE of the ROP prediction results based on the
clustering results are 0.49 and 10.56% respectively. For the
prediction of ROP with all parameter input, the MAE is 0.82,
and the MAPE is 16.52%. The MAPE of prediction of ROP after
clusteringdecreased from 18.72% to 10.56%.

(3) Mechanical parameters and hydraulic parameters of deep
formation in the Southern Margin block are optimized. The
model proposed in this paper provides more detailed in-
structions than the conventional MSE method. This method
can be used to optimize drilling parameters in a delicate way
for deep formations.
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Nomenclature

X the outliers
IQR the interquartile spacing
S the original signal
S* the signal after noise reduction
Ci the noise reduction coefficient of the i th time
N the sliding window width of (2m þ 1) groups of data
j. the j-th sample in the sample set
x*ij data after normalization
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xij data before normalization
Maxj maximum value of data of the j-th feature
Minj minimum value of the data of the j-th feature
x(i) elements in the data set
SSE error sum of squares, dimensionless
c(i) i-th cluster
p point in c(i)

mi average of all samples in c(i)

S(i) contour coefficient, dimensionless
a(i) average value of the dissimilarity of sample i to other

points in the same cluster, dimensionless
A amplitude, dimensionless
s standard deviation, dimensionless
Xi sample i
X average value of sample, dimensionless
m number of samples, dimensionless
V coefficient of variation, dimensionless
zt the update gate
ht-1 the output signal of a neuron on the same layer
ht the output signal of this neuron
xt the input of this neuron
Wz the weight of the update gate
s0 the sigmoid function
rt the reset gate
Wr the weight of the reset gate
~ht the pending output value
W~h the weight of the pending output value
b~h the compensation value of the pending output value
h0 the number of neurons in the hidden layer
m0 the number of neurons in the input layer
n0 the number of neurons in the output layer
a0 the adjustment constant, its value range is [1,10]
Yi the actual value
Y the average valuebY i the fitting value
SST the sum of squares of total deviation
RSS the sum of regression squares
j the total number of samples
MAE the mean absolute error
MAPE the mean absolute percentage error
yprei the i-th predicted ROP, m/h
m the number of data points
yi the i-th real ROP, m/h
MSE modified mechanical specific energy, MPa
Ef coefficient, dimensionless
n rotation speed, r/min
v ROP, m/h
W WOB, N
Q flow rate, L/s
Db bit diameter, mm
m sliding friction coefficient of drill bit, dimensionless
q displacement of drilling tool per revolution, L/r
KN speed-flow ratio of power drilling tools, r/L
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