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a b s t r a c t

We propose an integrated method of data-driven and mechanism models for well logging formation
evaluation, explicitly focusing on predicting reservoir parameters, such as porosity and water saturation.
Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.
However, with the increasing complexity of geological conditions in this industry, there is a growing
demand for improved accuracy in reservoir parameter prediction, leading to higher costs associated with
manual interpretation. The conventional logging interpretation methods rely on empirical relationships
between logging data and reservoir parameters, which suffer from low interpretation efficiency, intense
subjectivity, and suitability for ideal conditions. The application of artificial intelligence in the inter-
pretation of logging data provides a new solution to the problems existing in traditional methods. It is
expected to improve the accuracy and efficiency of the interpretation. If large and high-quality datasets
exist, data-driven models can reveal relationships of arbitrary complexity. Nevertheless, constructing
sufficiently large logging datasets with reliable labels remains challenging, making it difficult to apply
data-driven models effectively in logging data interpretation. Furthermore, data-driven models often act
as “black boxes” without explaining their predictions or ensuring compliance with primary physical
constraints. This paper proposes a machine learning method with strong physical constraints by inte-
grating mechanism and data-driven models. Prior knowledge of logging data interpretation is embedded
into machine learning regarding network structure, loss function, and optimization algorithm. We
employ the Physically Informed Auto-Encoder (PIAE) to predict porosity and water saturation, which can
be trained without labeled reservoir parameters using self-supervised learning techniques. This
approach effectively achieves automated interpretation and facilitates generalization across diverse
datasets.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Formation evaluation is essential in exploring and developing
oil and gas, with porosity and water saturation as critical reservoir
parameters. As the oil and gas industry advances, the geological
complexity encountered during research has escalated, leading to
high demands for accurate prediction of reservoir parameters.
Simultaneously, the costs associated with manual interpretation
have surged, making precise interpretation and cost reduction
y Elsevier B.V. on behalf of KeAi Co
particularly challenging. The most effective and accurate approach
involves acquiring core samples during drilling, followed by
laboratory-based physical analysis to determine reservoir param-
eters. However, this technique is not widely applicable due to
elevated sampling and testing expenses. Furthermore, although
accurate, the parameters derived from this method reflect only
localized strata characteristics, impeding macroscopic analysis of
subsurface geological formations.

In conventional logging data interpretation, empirical relation-
ships between logging data and reservoir parameters are often
employed as the basis for parameter determination. For example,
the porosity (POR) interpretation model is typically constructed
using density (DEN), neutron (CNL), and acoustic (AC) logs to
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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determine POR quantitatively. Additionally, in Archie's formula
(Archie, 1942,1947), formationwater saturation (SW) is resolved by
combining formation resistivity (RT) and formation water re-
sistivity (RW). While these mechanism models address logging
data interpretation within specific ranges, they are applicable only
under ideal conditions. The relationship between actual reservoir
parameters and well logging data becomes complex and nonlinear
in diverse geological conditions. Additionally, the manual inter-
pretation is often inefficient and prone to subjective bias.

Artificial intelligence has provided innovative solutions to
traditional logging data interpretation limitations. With access to
substantial datasets and corresponding labels, data-drivenmachine
learning offers the potential to establish complex mapping re-
lationships (Xiao, 2022). The typical applications of intelligent
logging data interpretation include reservoir parameters prediction
(Shao et al., 2022a), lithology identification (Dong et al., 2023a),
fluid identification (Luo et al., 2022; Gao et al., 2022), and fracture
evaluation (Zhao et al., 2022). Contemporary research primarily
utilizes models such as Long Short-Term Memory (LSTM) networks
(Gers et al., 2000; Hochreiter and Schmidhuber, 1997) and Con-
volutional Neural Networks (CNN) (Lecun et al., 1998; Szegedy
et al., 2015), which have been empirically demonstrated to effec-
tively capture the nonlinear relationships between reservoir pa-
rameters and logging data, as well as the sequential relationships
along the depth dimension. For instance, An et al. (2019) employed
LSTM to predict clay content and porosity, achieving reductions of
42.2% and 48.6%, respectively, in prediction errors. Song et al. (2019)
integrated CNN and Gated Recurrent Units (GRU) for porosity
prediction, exhibiting localized perception capability and long-
term memory capacity with the hybrid CNN-GRU model. Wang
et al. (2020) used a Copula function-based correlation analysis for
dimensionality reduction of logging data, selecting susceptible
features as inputs for a GRU network designed for reservoir pa-
rameters prediction. Liao et al. (2020) applied data mining and
clustering algorithms to categorize porosity structures, utilizing a
CNN model to predict microscopic reservoir pore structures based
on core capillary pressure data. Luo et al. (2022) proposed a parallel
network combining LSTM and CNN, effectively enabling multi-level
reservoir fluid identification. This approach improved the accuracy
of identifying oil-bearing reservoirs and enhanced the distinction
between closely related reservoirs.

To further improve the accuracy of logging data interpretation,
algorithm design and model architecture advancements have
driven the development of ensemble learning, transfer learning,
and multitask learning. Tang et al. (2021) proposed an ensemble
learning framework based on gradient-boosted decision trees
(GBDTs) to improve the agreement rate of sweet spot identification.
In the context of lithology recognition, Dong et al. (2023b) further
examined the application of ensemble learning, exploring sub-
classifier selection strategies to optimize performance. Shao et al.
(2022a) introduced transfer learning for reservoir parameter pre-
diction by transferring specific parameters from a jointly trained
porosity and water saturation model to a permeability prediction
model. Building on this approach, Shao et al. (2022b) proposed an
innovative cross-architecture multitask reservoir parameter pre-
diction model, where the private layer architecture can be indi-
vidually designed for each reservoir parameter. Both models
leverage the correlation effect between reservoir parameters.

Nevertheless, these data-driven models face several challenges
in practical application. Firstly, training labels are usually derived
from traditional logging data interpretation, which is inherently
multi-interpretable and uncertain, introducing bias. Secondly,
data-driven models often lack interpretability, resembling “black
boxes”whose prediction rationale remains opaque. Interpretability
to machine learning models. Given the limitations of current data-
1111
driven models, researchers have highlighted fundamental chal-
lenges in AI development. Karniadakis et al. (2021) emphasized
combining machine learning with physical laws, especially in par-
tial data and insight scenarios, to enhance generalization and
alignment with fundamental principles. Similarly, Xiao (2022)
argued that deep learning relies on simple network rules and
computational power lacks interpretability, suggesting a need for
models that merge mechanisms and data-driven approaches for
greater transparency.

Current research on integrating mechanism and data-driven
models follows two approaches. The first approach involves
modifying the architecture of machine learning models to ensure
that the predictions inherently conform to physical principles. For
instance, Chen and Zhang (2020) adjusted a network based on a
mechanism model for calculating geological parameters by adding
two neurons to the hidden layer to emulate the underlying physical
mechanisms, thereby constructing a physically constrained LSTM
network model. The second approach embeds physical knowledge
into model predictions by imposing constraints, which can be
categorized into soft and hard constraints. Soft constraints are
implemented through loss functions that penalize deviations of
predictions from specified physical principles, ensuring that the
model's outputs approximately satisfy these constraints. For
example, Doan et al. (2020) proposed an echo state network (ESN)
grounded in physical principles, introducing a system control
equation within the loss function to penalize predictions mis-
aligned with physics. Similarly, Rao et al. (2020) incorporated re-
sidual physics equations into the loss function to construct a
physics-informed neural network (PINN), which was applied to
simulate steady and transient laminar flows at low Reynolds
numbers. In the context of fracture evaluation, PINNs have been
used to predict rock mechanical parameters such as modulus of
elasticity, Poisson's ratio, tensile strength, and fracture toughness,
with empirical formulas and boundary conditions embedded in the
loss function through automatic differentiation (Li et al., 2023). On
the other hand, hard constraints ensure the strict satisfaction of
given physical equations within specific domains. Theoretically,
hard constraints enable higher prediction accuracy with fewer data
points and enhance robustness. Chen et al. (2021) introduced the
Hard Constraint Projection (HCP) model, which converts control
equations and physical constraints into discretizable forms, opti-
mizing hard constraints through projection. Empirical evidence
suggests this method is more effective and exhibits superior
extrapolation capabilities compared to traditional soft constraint
approaches.

However, whether embedding the mechanism model in the
model structure or the learning criteria, the data-driven compo-
nent primarily relies on label-driven mechanisms, ultimately
seeking a balance between the labels and mechanism models.
Consequently, the accuracy of labels is crucial during the training
process. Obtaining core data is challenging in geophysical sce-
narios, and labels derived from interpretation introduce subjective
elements. Therefore, it is necessary to reduce the dependence on
labels further.

This paper proposes an integrated method of data-driven and
mechanism models for well logging formation evaluation called
Physically Informed Auto-Encoder (PIAE). The self-supervised
framework of PIAE reduces the model's reliance on data quality
and quantity by seeking a balance between actual well logging data
and mechanism models, thereby avoiding the errors introduced by
manual interpretation labels. PIAE embeds the mechanism models
into the neural network architecture, with only the structure of the
mechanism model being constrained. Additionally, it effectively
integrates domain knowledge into the training process and the loss
function, allowing for the optimization of mechanism parameters
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within a reasonable range. This approach effectively automates the
interpretation process and enhances generalization across diverse
datasets.
2. Methodology

2.1. PIAE method

This paper proposes the PIAE method integrating data-driven
and mechanism models for well logging formation evaluation.
Data-drivenmodels are incorporated as encoders using LSTM, CNN,
and MLP. While mechanism models, including the multi-mineral
volume model and Archie's formula, are designed as decoders.
The model is a parallel integration of two auto-encoders, denoted
as P1 and P2 in Fig. 1. Both parts encompass a sequential integration
of data-driven and mechanism models. Therefore, the PIAE archi-
tecture represents a hybrid integration of data-driven and mecha-
nism models.

The PIAE framework consists of multi-mineral volume encoder
eMðx; qÞ, multi-mineral volume decoder dMðx; rÞ, Archie encoder
eAðx;4Þ and Archie decoder dAðxÞ, where q, r, f are trainable pa-
rameters of modules. The forward propagation of PIAE is shown in
Eqs. (1)e(7).

v ¼ eMðxÞ; eMðx; qÞ : RW�N/RM (1)

y1 ¼ dMðvÞ; dMðx; rÞ : RM/RN�1 (2)

POR¼ vM�1 þ vM (3)

SW¼ vM�1=POR (4)

mn ¼ eA
�h

x4; x5
i�

; eAðx;4Þ : RW�2/R2 (5)

y2 ¼ dAð½POR; SW;mn�Þ; dAðxÞ : R4/R1 (6)
Fig. 1. The overall structure o
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y¼Normð½y1; y2�Þ (7)

where Normð ,Þ denotes normalization of vectors and ½,; ,� denotes
concatenation of vectors.

The input x ¼ ½x1; x2;/xN �2RW�N is constructed by window
slicing based on measured logging data, including density log
(DEN), compensated neutron log (CNL), acoustic log (AC), gamma
ray (GR), and formation resistivity (RT). The output y2RN is the
corresponding reconstructed logging data (DEN*, CNL*, AC*, GR*,
RT*), used as supervision term in Ldata. The training objective aims
to minimize the loss function formed by Ldata and Lmn.

In P1, the slicing feature x2RW�N is encoded by eM to mineral
volume content v2RM , which is subsequently decoded by dM to
reconstructed logging data y12RN�1 excluding RT*. Furthermore,
volume content of water vM�1 and oil vM are further utilized to
compute POR and SW. In P2, encoder eA takes xN�1 and xN as inputs,
representing the slicing feature of RT and GR, respectively. The
rock-electrical parameter vectormn2R2, which is the output of eA,
are concatenatedwith POR and SW. The concatenated vector serves
as input to dA, which decodes it into the output y22R1 repre-
senting RT*. The outputs of P1 and P2 are concatenated and then
normalized to obtain the final output y2RN . In this paper, the
window size W is 21, the original feature length N is 5 and the
quantity of mineral components M is 9.
2.1.1. Multi-mineral volume encoder
The multi-mineral encoder eM is designed as a parallel structure

of CNN and LSTM, which facilitates the extraction of complex cor-
relations between logging data and reservoir parameters. These
foundational models are selected based on their widespread use
and demonstrated effectiveness in interpreting logging data (Luo
et al., 2022; Song et al., 2019).

CNN comprises convolutional layers, pooling layers, and fully
connected layers (Lecun et al., 1998; Szegedy et al., 2015). The
convolutional layers extract features from the data, where multiple
convolutional kernels are set to capture distinct features within the
data. Pooling layers perform subsampling on the features extracted
by the convolutional layers to reduce overfitting. The resulting
features are then flattened into a vector and fed into fully connected
f PIAE and staged PIAE.



Fig. 2. The principle of 1-D convolution layer and LSTM layer.
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layers for specific tasks. As illustrated in Fig. 2(a), the 1-D convo-
lution process in logging data involves sliding convolution kernels
over constructed features to learn the correlations between logging
data. Multiple convolution kernels slide simultaneously to learn
different features within the logging data.

LSTM is a recurrent neural network (RNN) adept at handling
sequential data and maintaining long-term dependencies (Gers
et al., 2000; Hochreiter and Schmidhuber, 1997). It is achieved by
incorporating memory cells and gated units, including input gates,
forget gates, and output gates. Fig. 2(b) illustrates the structure of
memory cells and the LSTM layer. For time step t, the input of the
LSTM layer includes Ct�1, ht�1 and xt , represent the cell state at
time t� 1, the hidden state at time t� 1, and the input vector at
time t, respectively. The output comprises the cell state Ct and
hidden state ht at time t. In typical layered rock formations, the
formation order determines the strata's superimposition relation,
which is reflected in well-log curves as a sequential relationship in
the depth direction. Therefore, LSTM can effectively process logging
data by capturing temporal relationships between measurements
at different depths.

By integrating CNN and LSTM as a parallel structure, the multi-
mineral encoder leverages the strengths of both types of models.
Leveraging the local perception capacity of CNN, 1-D convolution is
employed to extract correlations in the feature dimension. Mean-
while, the memory capacity of the LSTM network is utilized to
capture temporal information in the depth dimension. Table D.1
and Table D.2 show the specific setting of multi-mineral encoder
architecture.

2.1.2. Multi-mineral volume decoder
The multi-mineral volume model is a linear logging response

equation, typically serving as the mechanism model for formation
evaluation. Various rock components, including rock matrix, clay
minerals, and pore fluids, are assumed to possess distinct mineral
volumes in the formation. The sum of all mineral volumes within
the formation equals 1. Eqs. (8) and (9) represent the response
equation of the formation to logging data. Involving n logging
curves and m types of minerals, the multi-mineral volume model
can be formulated in matrix form (Yong and Zhang, 2007).2664
v1
v2
«
vm

3775
T2664

r11 r12 / r1n
r21 1 «
« 1 «

rm1 / / rmn

3775 ¼

2664
y1
y2
«
yn

3775
T

(8)

X
i

vi ¼1 (9)
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In the multi-mineral volume decoder dM, the linear logging
response equation is transformed into neural network layers. The
linear logging response Eq. (8) is considered a fully connected layer
without bias, where vi represents the input neurons, yi represents
the output neurons, and the coefficient matrix composed of min-
eral response parameters represents the weight of the linear layer.
Minerals with relatively higher component content are selected as
candidates through clay mineral and rock slice analysis of the
studied region. Ultimately, themineral components are determined
to be quartz, calcite, mica, chlorite, illite, kaolinite, montmorillonite,
water, and oil. The specific coefficient matrix is described in
Table A.1. The initialized weight parameters r undergo maximum
and minimum normalization by Eq. (10) to achieve a consistent
updating scale during backpropagation. Consequently, the
normalized output y0 is derived following Eq. (11).

r0m�n ¼

266666666664

r11 �min
1j

�
r1j

�
max
1j

�
r1j

��min
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�
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� /
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�
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�
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�
rmj

�

377777777775
(10)

y
0 ¼ vTr

0
(11)

The final output y is obtained by reverse normalization and
restoration to the original scale.

y ¼

26664
y

0
1$

�
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37775
T

(12)

The mass balance equation in Eq. (9) constrain the sum of all
mineral volume content to be 1. Similarly, The Softmax function, as
shown in Eq. (13), is a commonly used activation function in neural
networks. It maps the outputs of multiple neurons to a probability
distribution within the range of 0e1 and constrain the sum of the
outputs to be 1.

SoftmaxðviÞ¼ evi
, XM

m¼1

evm (13)

Therefore, the same constraining effect is achieved by
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introducing Softmax as an activation function after the input layer
neurons of a fully connected layer. The linear logging response
equation is successfully embedded into the neural network.
2.1.3. Archie encoder and Archie decoder
Archie's formula is an empirical equation used for calculating

water saturation (Archie, 1942) according to Eq. (14).

SW¼
�

ab,RW
RT,PORm

�1
n

(14)

where RW is the formation water resistivity obtained through
formation water analysis, and a, b, m, and n are regression param-
eters from rock-electrical experiments. Among them, a and b are
lithology-related coefficients, m is the cementation index, and n is
the saturation exponent.

The rock-electro parameters a, b, m, and n will yield uniform
values for the experimental rock samples because they are obtained
through regression using experimental data. Consequently, for rock
samples of the same lithology but with different porosities, Archie's
formula requires identical values of a, b, m, and n; otherwise, dis-
crepancies arise (Sun, 2007; Yang et al., 2018). For reservoirs in
different conditions, researchers have conducted a series of in-
vestigations and improvements on Archie's formula, including
distinct parameter selections, simplification and enhancement of
the equation's form, and the introduction of other pertinent vari-
ables (Haro, 2010; Kennedy and Herrick, 2012; Zhang, 2020). In
practice, there are several limitations to Archie's formula. One of
these is the omission of the influence of clay content on conduc-
tivity within the rock matrix and assuming the matrix to be an
insulator. Some studies have indicated that the response equation
for clay-bearing sandstone aligns with pure sandstone, differing
only in rock electrical parameters (Han and Pan, 2010; Yang et al.,
2018).

Therefore, considering the effects of clay content, variable rock-
electro parameters are employed in Archie's formula. The rock-
electro parameters are treated as outputs of eA, which is con-
structed as MLP with four hidden layers. The logging data RT and
GR are inputs to eA, with m and n as outputs. The specific structure
of eA is detailed in Table D.3. In this study, only m and n are
considered variable rock-electrical parameters for experimenta-
tion, while a and b remain fixed values. Among the inputs of dA, a, b,
and RW are experimentally determined constants, while POR and
SW are determined based on the mineral volume content v. The
sequential integration of data-driven and mechanism models en-
ables embedding Archie's formula and accommodating variable
rock-electrical parameters.
2.2. Staged PIAE

In conventional logging data interpretation, the interpretation
of POR is typically derived using multi-mineral volume equations,
followed by obtaining SW through Archie's formula. Therefore, the
interpretation of SW is based on POR. The predictive order of POR
and SW is considered, leading to the design of a staged reservoir
parameter prediction model based on PIAE (staged PIAE), as illus-
trated in Fig.1. The training of this model involves two stages: In the
first stage, self-supervised training is conducted using the P1
component of PIAE, whereinwater and oil neurons are employed to
compute POR. Subsequently, in the second stage, the labels used for
training include the logging data RT, mineral volume content,
and POR obtained from the first stage. The parameters of the
multi-mineral volume encoder eM are transferred from the model
in stage 1. And the Archie encoder eA and decoder dA are
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incorporated for continued training and predicting SW.
The staged PIAE incorporates expert experience into the model

training process, employing distinct mechanism models for
different processes and enabling more targeted prediction of
reservoir parameters. In contrast to the staged PIAE, the end-to-end
PIAE facilitates simultaneous prediction of multiple reservoir pa-
rameters. Both utilize the model architecture of auto-encoders,
enabling them to undergo self-supervised training without reser-
voir parameter labels, thereby reducing the dependency on labels.
The PIAE and staged PIAE also share an identical internal structure
in different modules.
2.3. Loss function

Based on the supervision term of PIAE and staged PIAE, the loss
function Ldata is formulated as a weighted sum of Mean Squared
Error (MSE), according to Eqs. (15) and (16), where the weights are
the reciprocals of the standard deviation s of the labels, as shown in
Eq. (17). The model's attention is prioritized by assigning a higher
weight to data with a more concentrated distribution, thereby
facilitating a more comprehensive understanding of their distinc-
tive features.

Ldata ¼
X
i

MSEi
si

; (15)

MSEX ¼
1
N

XN
i¼0

ðX�X*Þ (16)

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼0
ðX � XÞ2

r
(17)

In traditional logging data interpretation research, a significant
amount of domain knowledge has been accumulated. For the rock
electrical parameters m and n in Archie's formula, it is generally
believed that a reasonable range form is 1.5e3, and n is typically set
to 2. The constraints of m and n are incorporated into the loss
function, aiming to ensure that the values of m and n align with
empirical ranges as much as possible. The penalty term Eq. (18) is
introduced, as outlined in Appendix B for its derivation. The final
training loss function is given by Eq. (19), where l denotes the
weight of the penalty term.

Lmn ¼
X
i

fReLUðð1:5�miÞð3�miÞ� εÞþ
X
i

fReLU
�
ð2�niÞ2� ε

�
(18)

Loss¼ð1� lÞLdata þ lLmn (19)
3. Case study

In this section, we demonstrate the effectiveness of the pro-
posed PIAE method on a real-world logging dataset. Firstly, we
compare the different model structures of multi-mineral volume
encoders, including CNN, LSTM, and the parallel structure of CNN
and LSTM (CNN-LSTM). Secondly, we introduce a trainable mech-
anism decoder and verify the effectiveness of the optimization al-
gorithm. Thirdly, the effectiveness of adding the penalty term in the
loss function to constrain the rock-electrical parameters is verified.
Fourthly, we conduct a comparative analysis between the end-to-
end and staged process, examining the applicability of both
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approaches. Then, we test groups of the experiment in the
extended dataset to verify the adaptability of the PIAE method.
Finally, a comprehensive evaluation of the robustness of PIAE is
presented under various noise conditions, specifically focusing on
Gaussian noise and salt-and-pepper noise.
Fig. 3. Flow chart of data pre-processing.
3.1. Dataset and evaluation metric

The experiment utilizes conventional logging data from a spe-
cific geology region. Based on the oil testing results and strati-
graphic division, the reservoir data for this region were selected as
the experimental dataset. Due to the tight sandstone reservoir
nature, challenges such as low porosity, low permeability, complex
pore structure, and poor petrophysical properties are present.
Consequently, there are deviations between conventional inter-
pretation results and core data.

The logging depth of this reservoir ranges from 2500 to 2800 m
with a sampling interval of 0.125m. The distribution of logging data
is presented in Table 1, where inter_POR and inter_SW denote
interpretation results, core_POR and core_SWdenote core data. The
dataset is combined with 55 wells, where 55 wells have core_POR
and only 8 wells have core_SW. The amount of core data in each
well ranges from 8 to 187. The interpretations of POR and SW are
available for all wells and were derived by experts based on their
experience and relevant geological materials.

A total of 53015 sets of well logging data samples were obtained
by data pre-processing, as shown in Fig. 3, where DEN, CNL, AC, GR,
and RT are taken as raw logging data. Considering the limited fea-
tures of the original dataset and the sequential nature of logging
data, the model design involves augmenting the dimensions
through window slicing. The pre-processing workflow for slicing
logging data needs to ensure the continuity of depth within the
samples. This process first removes duplicate depths and sorts the
remaining data to maintain the correct order of depths in the
original features. Then, outliers are marked to avoid affecting the
normalization process. Further, the slicing samples containing
marked outliers are removed, and the continuity in each sample is
checked to prevent discontinuities caused by missing data
along the depth in the original dataset. This comprehensive process
yields a dataset specific to a well, ensuring data integrity and
continuity for subsequent analysis. The dataset does not need to be
partitioned into training and testing sets because the proposed
method is designed for self-supervised training without requiring
reservoir parameter labels. Thus, all samples in the dataset are used
for training, and the samples with core labels are tested. The pre-
diction results (pre_POR, pre_SW) are compared with the core data
and the interpreted results, followed by performance metrics
evaluation.

Regression tasks commonly use evaluation metrics like Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Mean Squared Error (MSE), and the coefficient of determination
Table 1
Statistical analysis of data set.

Amount Mean Std Min Max

DEN 53015 2.57 0.12 1.27 2.84
CNL 53015 21.62 6.47 2.47 94.61
AC 53015 230.10 20.20 177.50 341.39
GR 53015 98.92 20.52 37.52 241.80
RT 53015 27.61 69.31 1.16 2000.00
inter_POR 14036 8.76 2.90 0.10 18.82
inter_SW 12008 67.13 15.80 13.79 99.89
core_POR 3374 9.00 2.67 0.58 16.55
core_SW 486 43.83 11.66 19.08 82.79
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(R2). While R2 assesses trend consistency between labels and pre-
dictions, it is less suitable in this paper due to the discontinuous
nature of core data, which serves as ground truth. Additionally, MSE
is sensitive to significant errors. However, extreme values are
avoided with our model's constraints on reservoir parameter pre-
dictions, making MAE and MSE performance broadly consistent.
Thus, we evaluate model performance using MAE and MAPE, of-
fering a comprehensive assessment of absolute and relative accu-
racy. As shown in Eqs. (20) and (21), MAE provides a
straightforward measure of average error, while MAPE is scale-
invariant and expresses errors as a percentage.

MAE¼1
n

Xn
i¼1

jyi � byij (20)

MAPE ¼ 1
n

Xn
i¼1

				yi � byi
yi

				$100% (21)
3.2. Implement details

The proposed model is built on PyTorch (Paszke et al., 2017),
using the Adam optimizer with a learning rate 1 � 10�3 for
updating the parameters. The batch size is set to 512. All experi-
ments are conducted on the NVIDIA RTX 3090 GPU. For example,
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training on a single well with 951 samples required approximately
7000 epochs, which took around 3 min to complete. We use the
same hyper-parameter setting for the 55 wells in the dataset and
train the model on each well individually.
3.3. Multi-mineral volume encoder based on CNN and LSTM

The first experiment evaluates the effect of different multi-
mineral volume encoders in PIAE on well A. Two fundamental
models, LSTM and CNN, were selected for investigation. They can
extract features and capture sequential relationships among sam-
ples from different perspectives. Three models were configured:
CNN, LSTM, and a parallel structure of CNN and LSTM (CNN-LSTM),
with the specific network structures outlined in Appendix D.

The cross plot of POR and SW are illustrated in Fig. 4. The
interpretation and prediction errors under three different encoder
structures are presented in Table 3, with the core data serving as the
ground truth. Additionally, the predictive performance of the
reconstructed logging data for three sets of experiments is pre-
sented in Table 2.

The five reconstructed logging data are used for supervised
training during the training process. The evaluation metrics in
Table 2 show that CNN-LSTM outperforms LSTM and CNN in terms
Fig. 4. Cross plots of POR and SW in different experiment settings. The X-axis represents the
predicted result in orange. The red dashed line represents the ideal result equal to the core d
of SW.
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of prediction performance. Among them, CNN exhibits the weakest
predictive performance. To ensure the reconstructed reservoir pa-
rameters satisfy primary physical constraints in PIAE, the accuracy
of the reconstructed logging data is necessary. Therefore, theoret-
ically, the predicted reservoir parameters POR and SW cannot be
reliable when selected by the CNN-based multi-mineral volume
encoder.

The training of reservoir parameters POR and SW is conducted
unsupervised. According to the evaluation index presented in
Table 3, all three models achieve predictions that are generally
superior to the interpretation results. LSTM and CNN-LSTM pre-
diction errors on the two reservoir parameters are close, and both
models outperform the interpretation results. The predictive per-
formance of POR is enhanced by 17.56% and 32.26% in terms of MAE
and MAPE, respectively. The predictive performance of SW is
improved by 45.53% and 49.17% on MAE and MAPE, respectively.
The CNN demonstrates superior predictive capability for POR
compared to the interpreted results, but a significant bias exists in
the SW prediction.

Further insights can be gained from Fig. 4, where blue points
represent interpreted results and orange points represent predicted
results. The proximity of data points to the red dashed line signifies
a better fit to core data. By comparing the results from the three sets
core data of POR or SW, and the Y-axis represents the interpreted result in blue or the
ata. (a)e(c) demonstrate the cross plots of POR, and (d)e(f) demonstrate the cross plots



Table 2
Error of reconstructed logging data in different multi-mineral volume encoders.

CNN LSTM CNN-LSTM

DEN MAE 0.057 0.053 0.027
MAPE 0.022 0.021 0.011

CNL MAE 2.114 1.753 1.745
MAPE 0.104 0.081 0.078

AC MAE 10.942 8.891 10.708
MAPE 0.049 0.040 0.047

GR MAE 18.373 17.081 10.224
MAPE 0.251 0.217 0.121

RT MAE 12.298 28.697 5.395
MAPE 0.468 0.726 0.201

SUM MAE 43.783 56.474 28.100
MAPE 0.893 1.084 0.458

Table 3
Performance comparison between different multi-mineral volume encoders.

Well A POR SW

MAE MAPE MAE MAPE

Interpretation error 3.36 47.42 26.97 82.94
CNN 3.16 33.24 52.45 157.18
LSTM 2.81 32.12 14.69 42.16
CNN-LSTM 2.77 32.23 14.77 42.52
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of experiments, it is evident that the distribution of CNN's predicted
results is more concentrated, while LSTM's predicted results exhibit
a strong correlation with interpreted results. The predictive per-
formance of the CNN-LSTM closely approximates that of the LSTM.
However, it is noteworthy that the CNN-LSTM's predictions exhibit
a more substantial alignment with the core data, as illustrated by
their proximity to the red dashed line in Fig. 4. It suggests that CNN-
LSTM's predictive outcomes exhibit a more pronounced fidelity to
the core dataset.

Considering both the predictive performance of reconstructed
logging data and the reservoir parameters POR and SW, CNN-LSTM
stands out as the optimal model for the multi-mineral volume
encoder.
3.4. Trainable mechanism decoder
Algorithm 1. Optimization algorithm of trainable mechanism decoder.

Input: x ¼ ½x1;x2;/xN �2RN�W

Initialization:
Initialize parameter r in the decoder dM with fixed weight and set
requires_grade as False;
Randomly initialize parameters q and 4 in encoders.
1: for epoch do:
2: Updating encoder parameters q and 4 as follows:

min
q;4

Loss

3: if early stop condition:
4: Set requires_grade as True
5: Updating parameters q, 4 and r as follows:

min
q;4;r

Loss

6: if early stop condition:
7: Break
8: End for

1117
We introduce an optimization algorithm of a trainable mecha-
nism decoder described in Algorithm 1. In PIAE, only the multi-
mineral volume decoder dM has parameters that can be updated
by gradient descent. Thus, we use the algorithm to update r ac-
cording to the logging data and obtainmore suitable parameters for
the well. The evaluation metrics are shown in Fig. 5, and the
comparison results are shown in Fig. 6.

Comparing the evaluation metrics obtained by different opti-
mization algorithms, the trainable mechanism decoder has better
performance in the prediction of POR and SW, as shown in Fig. 5.
Specifically, MAE andMAPE of predicted POR are reduced by 52.94%
and 42.77%, respectively, and metrics of predicted SW decreased by
58.25% and 58.16%, respectively. Taking the dashed lines in Fig. 5 as
the baseline, the prediction error of the trainable mechanism
decoder is lower than the interpretation error. In contrast, the fixed
mechanism decoder is higher than the interpretation error. It in-
dicates that the fixed mechanism decoder cannot adapt when the
initialized mechanism parameters do not conform to the logging
data.

There is an abnormal prediction MAPE of SW in Fig. 5(b) with a
value of 132.93%, whichmeans that the value of core data is smaller
than the error of the predicted result and core data. It could be
caused by abnormally low values of core data or failure of model
predictions. In these cases, the value of MAPEwill be scaled up to be
greater than 100%. In Fig. 6, the SW in the 2554e2558 m depth
proves that the fixed mechanism decoder fails in predicting SW.

The above results show that the trainable mechanism decoder
can better predict POR and SW. It is demonstrated that the mech-
anism framework and initial parameters constrain the solution
space of the model. The mechanism parameters are adjusted based
on the logging data during training, aiming to achieve a balance
between logging data and mechanism model.
3.5. Rock-electrical parameters constraints

The effectiveness of constraints on rock-electrical parameters is
verified by conducting experiments on the penalty term Lmn in the
loss function. The distributions of m and n based on different loss
functions are shown in Fig. 7, where the dashed lines denote the
empirically reasonable range or value of m and n. The evaluation
metrics of interpretation error and prediction error in different loss
functions are listed in Table 4. Performance comparison based on
different loss functions.

The effectiveness of Lmn is substantiated from two perspectives.
Firstly, considering the empirical range for m of 1.5e2 and the
empirical value for n of 2, the Lmn restricts the distribution ofm and
n within a reasonable range in Fig. 7. Additionally, the constrain



Fig. 5. The histogram of evaluation metrics in fixed and trainable mechanism decoder dM. The core data serves as ground truth to obtain the metrics MAE and MAPE. The dashed
line represents the interpretation error. The variation between the prediction error and the interpretation error is delineated.

Fig. 6. Predictive results of POR and SW in fixed and trainable mechanism decoder.

Fig. 7. Distributions of rock-electrical parameters m and n.The dashed lines denote the
empirically reasonable range or value of m and n.

Table 4
Performance comparison based on different loss functions.

Well B POR SW

MAE MAPE MAE MAPE

Interpretation error 2.30 29.65 19.23 43.11
Loss without Lmn 2.26 41.94 32.46 68.77
Loss with Lmn 2.30 43.28 9.41 19.26

Table 5
Performance comparison between end-to-end and staged process based on PIAE.

Well C POR SW

MAE MAPE MAE MAPE

Interpretation error 3.30 58.77 18.71 62.30
Staged Stage1 3.60 64.57 19.31 65.45

Stage2 3.61 64.75 9.47 27.68
End-to-end 2.82 52.41 7.10 21.15
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ensures that the model remains consistent with established
knowledge while also allowing room for flexibility. This intuitive
1118
validation contributes significantly to enhancing our understand-
ing and interpretation of results obtained by the method.

Secondly, regarding the prediction results, the MAE of POR



Fig. 8. Predictive results of POR and SW in end-to-end and staged processes based on
PIAE.
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remains consistent while the MAPE increases. The increase in
MAPE indicates that the prediction errors mainly occur at depths
with lower POR values and the interpretation errors mainly arise at
depths with higher POR values. Thus, the performance on POR is
consistent regardless of whether a penalty term is used. Addi-
tionally, the Lmn effectively reduces the prediction error for SW,
achieving an error lower than the interpretation error. When POR
remains unchanged while SW decreases, this further corroborates
the efficacy of constraining m and n in Archie's formula.

3.6. End-to-end and staged process based on PIAE

In this experiment, the impact of different processes on the
performance of predicted reservoir parameters is tested on well C.
In traditional logging data interpretation, the POR is interpreted
first, and then the SW is obtained based on the POR. Thus, this
experiment explores whether the order in the traditional method is
necessary for PIAE. Table 5 shows the interpretation and prediction
errors of different methods, taking core data as the ground truth.
The specific prediction results are illustrated in Fig. 8.

Regarding the two stages of the staged PIAE, the results
demonstrate a similar predictive effect for POR in both stages.
Additionally, there is a significant enhancement in the performance
of SW after undergoing the second stage of training, resulting in a
reduction of 50.96% and 57.71% in MAE andMAPE, respectively. The
prediction SW of the first stage in Fig. 8 fluctuates in a small range
near 50, which means the model is entirely invalid for predicting
SW. It indicates that the multi-mineral volume decoder in the first
stage primarily serves to constrain POR, and the Archie decoder in
the second stage is primarily utilized to constrain SW.

The effectiveness of the two decoders can be explained from the
perspective of model architecture. The mineral response matrix for
logging data is constructed from Table A.1, which serves as the
initialization parameters for the fully connected layers and is uti-
lized to constrain the model training. Heatmaps depicting the
correlations of each neuron in the data representation layer are
illustrated, as shown in Fig. A.1. The strong correlation between the
initialization vectors of water and oil neurons indicates that the
logging response module cannot differentiate between these two
neurons, implying limited constraints on the prediction of SW.

Further comparing the prediction performance of the two pro-
cesses, end-to-end PIAE achieves a lower prediction error on both
POR and SW. Thus, it can effectively integrate the constraints of
different mechanism models and balance the influence of different
mechanism decoders under the supervision of actual logging data
to obtain more realistic inversion results.

3.7. Extended testing on multiple wells

We tested five groups of experiments on 55 wells, and the
models for each well were trained separately. The specific experi-
mental settings are shown in Table 6. Figs. 9 and 10 are derived
based on the statistical analysis of experimental results obtained
from multiple wells, with 55 wells contributing to the POR results
and 8 wells contributing to the SW results. Figs. 9 and 10 illustrate
three distinct types of errors. Two sets of prediction errors are
computed, taking interpretation results and core data as the ground
truth. The third set measures the deviation of prediction errors
from interpretation errors by considering core data as the ground
truth. A positive change indicates that the interpretation result is
closer to the core data, while a negative change suggests that the
prediction result is closer to the core data. The red dashed line
represents that the MAE variation is 0.8 and the MAPE variation is
5. The number of wells falling below this threshold is tallied, as
illustrated in Table 6.



Table 6
The count of wells with error variation that meet the eligibility criteria in different experiment settings.

Experiment Multi-mineral encoder Multi-mineral decoder Process MAPE <5% MAE <0.8

POR SW POR SW

A CNN-LSTM Trainable End-to-end 34 6 38 4
B CNN-LSTM Fixed End-to-end 23 4 26 3
C LSTM Trainable End-to-end 29 4 33 3
D CNN Trainable End-to-end 22 1 23 1
E CNN-LSTM Trainable Staged 31 4 39 3

Fig. 9. Box plots of the error and error variation in different experiment settings. The red dashed line represents that the MAE variation is 0.8 and the MAPE variation is 5. The data
of POR is collected from 55 wells. The box represents the interquartile range, which contains the middle 50% of the data. The line inside the box indicates the median value, while
the whiskers show the minimum and maximum values within a specific range, and the hollow circles represent outliers in the dataset.
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The results depicted in Figs. 9 and 10 demonstrate minimal
overall disparity among the five experimental groups. However, it is
worth noting that experiment D exhibits a higher error rate than
other experiments, suggesting that CNN may not be suitable for
logging data when employed as an encoder. Conversely, both
experiment A and experiment E yield more effective outcomes.
Experiment especifically showcases a greater concentration of re-
sults but also reveals a broader distribution of anomalies. This
observation indicates that the end-to-end process can be adapted
to logging data from various wells with enhanced generalization
capabilities and superior mobility compared to the staged process.
The comparison of the results between experiment A and experi-
ment B reveals that the data distribution range in experiment B is
wider, indicating that the trainable mechanism model can yield
more precise and stable prediction outcomes.
1120
The data in Table 6 illustrates the number of wells exhibiting
error variations below 5% MAPE and 0.8 MAE thresholds. The
findings indicate that group A had the most favorable experimental
effect. The POR prediction results revealed that 61.82% and 69.09%
of wells satisfied the MAPE and MAE criteria, respectively.
Regarding the SW prediction results, it was found that 75% and 50%
of Wells met the MAPE and MAE conditions correspondingly.
Through verification using multiple well data, it can be concluded
that the PIAE method adequately fulfills the requirements for
automatic interpretationwithout necessitating reservoir parameter
labels.

3.8. Robustness of PIAE

In this section, we conduct two experiments to evaluate the



Fig. 10. Box plots of the error and error variation in different experiment settings. The red dashed line represents that the MAE variation is 0.8 and the MAPE variation is 5. The data
of SW is collected from 8 wells. The box represents the interquartile range, which contains the middle 50% of the data. The line inside the box indicates the median value, while the
whiskers show the minimum and maximum values within a specific range, and the hollow circles represent outliers in the dataset.

Table 7
Performance comparison between different noisy data.

Well A POR SW

MAE MAPE MAE MAPE

Interpretation error 2.27 39.09 19.66 58.40
Prediction error 2.61 37.62 15.92 40.17

Gaussian s ¼ 0:1 2.67 38.31 16.77 42.87
s ¼ 0:2 2.91 40.46 18.38 48.65
s ¼ 0:3 3.58 47.81 22.28 60.09

Salt-and-Pepper p ¼ 10% 2.65 38.41 15.44 39.90
p ¼ 20% 2.84 40.64 15.75 39.36
p ¼ 30% 2.96 43.73 16.15 39.96
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robustness of the PIAE, focusing on its performance under different
noise conditions. Firstly, we test the model's error under varying
levels of Gaussian noise, with different variances (s ¼ 0:1;0:2;0:3)
added to the input data to simulate different levels of noise in well
logging measurements. Secondly, we evaluate the model's robust-
ness to salt-and-pepper noise, which randomly alters different
proportions (p ¼ 10%; 20%; 30%) of the input data to either the
maximum or minimum value. This type of noise simulates the
presence of outliers or anomalies in well logging data.

The experimental results, summarized in Table 7, show that as
the Gaussian and salt-and-pepper noise level increased, the
model's prediction error also increased. However, the model's
sensitivity to the two types of noise has distinct differences. The
PIAE shows higher sensitivity to Gaussian noise. When the variance
of the Gaussian noise increased to 0.3, the prediction error
1121
exceeded the interpretive error, indicating sharp performance
degradation under high.

Gaussian noise conditions. In contrast, the model is more robust
to salt-and-pepper noise. Even as the proportion of salt-and-
pepper noise increased to 30%, the reduction in predictive perfor-
mance is relatively small, with the prediction for SW remaining
within acceptable error margins. These observations suggest that
the PIAE model's robustness is influenced by the type and level of
noise present in the input data. The model's higher sensitivity to
Gaussian noise is attributed to its statistical characteristics, which
uniformly affect all data, whereas salt-and-pepper noise introduces
isolated anomalies that the PIAE model can better handle due to its
feature construction process involving window slicing, which help
mitigate the impact of outliers.



DEN Density log
CNL Compensating neutron log
AC Acoustic log
GR Gamma ray
RT Formation resistivity
RW Formation water resistivity
POR Porosity
SW Water saturation
GRU Gated Recurrent Units
MLP Multi-layer perceptron
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
CNN-LSTM The parallel structure of CNN and LSTM
PIAE Physically Informed Auto-Encoder
Staged PIAE Staged reservoir parameter prediction model based on PIAE
dMðx; rÞ Multi-mineral volume decoder
eMðx; qÞ Multi-mineral volume encoder
dAðxÞ Archie decoder
eAðx;4Þ Archie encoder
r;q;4 Trainable parameters of modules
W Window length
N Number of features
M Number of mineral components
a;b;m;n Rock-electrical parameters
pre Prediction results
core Core data
inter Interpreted results

Table A.1
Logging mineral response values.

DEN CNL AC GR

Quartz 2.65 �6 55 0
Calcite 2.71 0 47.5 0
Mica 2.8 20 65 270
Chlorite 2.76 52 60 220
Illite 2.5 36 100 270
Kaolinite 2.51 40 80 110
Montmorillonite 2.02 40 110 220
Water 1 100 189 0
Oil 0.8 100 200 0
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4. Conclusions

This paper investigates the integration of data-driven and
mechanism models for reservoir parameter prediction. We intro-
duce the PIAE, a model based on the auto-encoder architecture that
integrates mechanism models into the network structure, loss
function, and training process. Various forms of prior information
from the geophysical logging domain are skillfully incorporated
into the different aspects of the machine learning framework. The
model balances mechanism and data-driven approaches through
iterative training of neural networks. The validity of the PIAE is
tested using logging data from an actual tight sandstone reservoir,
leading to several key conclusions.

(1) Precision Improvement: Experimental evidence demon-
strates that the PIAE achieves superior performance
compared to traditional interpretation methods without
relying on labels for POR and SW. It signifies the potential for
cost-effective and accurate reservoir parameter predictions
while ensuring the predicted results adhere to fundamental
physical constraints.

(2) Adaptability and Interpretability: The flexibility and train-
ability of the embedded mechanismmodel parameters allow
for adjustments based on varying geological settings, making
the method highly adaptable and versatile. Moreover, ex-
perts can manually adjust the parameters to correct unrea-
sonable deviations in the predictions, enhancing the model's
interpretability.

(3) Generalization: The PIAE is trained using self-supervised
methods without reservoir parameter labels and can deal
with new areas where labeled training samples are scarce.
Thus, the method facilitates generalization across diverse
datasets.

(4) Robustness: The model's design, particularly the slicing
feature during data preprocessing, plays a significant role in
minimizing the influence of outliers, thus maintaining pre-
dictive accuracy in the presence of noise.

This method possesses both theoretical significance and prac-
tical value. It ensures high precision and mitigates expenses,
providing substantial support for the comprehensive interpretation
of logging data. However, the current design of PIAE is specifically
tailored to predict POR and SW, whichmay lead to scalability issues
when extending the model to predict other parameters. The model
architecture would need to be adjusted according to the mecha-
nism of the target parameter, with the complexity of this adjust-
ment correlating to the complexity of the mechanism model.

Future work will focus on addressing the scalability issues by
developing a more flexible model architecture that can easily adapt
to additional parameters. This will involve creating modular
1122
components within the model, allowing for adjustments based on
the mechanism models of different parameters.
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Table C.1
Optimization of hyper-parameters in PIAE.

Parameters Search range Optimal setting

Learning rate 1 � 10�4e1 � 10�2 1 � 10�3

CNN kernel size 2e5 3
LSTM hidden size 20e50 30
Weight l in loss 0.1e0.4 0.2

Table D.1
Multi-mineral volume encoder eMðx; qÞ.

CNN
(0) Conv1d (21, 5, kernel_size ¼ (3), stride ¼ (1))
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Appendices

A. Mineral response matrix for reservoir parameter learning module

Reference to Table “Logging Characteristics of Major Sedimen-
tary Rock Minerals” in “Logging Data Processing and Comprehen-
sive Interpretation” (Yong and Zhang, 2007), coefficient matrix is
obtained and is used for predefining weights of multi-mineral
decoder dM. Subsequently, the decoder does not perform weight
updates to enforce physical constraints. The specific coefficient
matrix is presented in Table A.1. Furthermore, the correlation be-
tween well log response vectors for each mineral component was
computed, and the correlation heatmap is shown in Fig. A.1.

Fig. A.1. Heatmap of the correlation of logging mineral response vectors.
(1) BatchNorm1d (5, eps ¼ 1e�05)
(2) LeakyReLU ()
(3) Dropout (p ¼ 0.25)
(4) Conv1d (5, 10, kernel_size ¼ (3), stride ¼ (1))
(5) BatchNorm1d (10, eps ¼ 1e-05)
(6) LeakyReLU ()
(7) Dropout (p ¼ 0.25)
(8) MaxPool1d (kernel_size ¼ 3, stride ¼ 2, padding ¼ 1)
(9) Flatten (start_dim ¼ 1, end_dim ¼ �1)
(10) Linear (in_features ¼ 30, out_features ¼ 60)
(11) Tanh ()
LSTM
(0) LSTM (5, 30)
(1) Flatten (start_dim ¼ 1, end_dim ¼ �1)
(2) Linear (in_features ¼ 630, out_features ¼ 320)
(3) LeakyReLU (negative_slope ¼ 0.2)
(4) Linear (in_features ¼ 320, out_features ¼ 60)
(5) Tanh ()
(6) Linear (in_features ¼ 120, out_features ¼ 60)
(7) Tanh ()
CNN-LSTM
(0) CNN (21, 60)
(1) LSTM (5, 60)
(2) Linear (in_features ¼ 120, out_features ¼ 60)
(3) Tanh ()

Table D.2
Multi-mineral volume decoder dMðx; rÞ.

(0) Linear (in_features ¼ 60, out_features ¼ 9)
(1) Softmax ()
(2) Linear (in_features ¼ 9, out_features ¼ 4, bias ¼ False)
B. Loss function penalty term derivation

Assuming a constrained range ða; bÞ for the predicted value by,
we define a constraint function as follows:

GðbyÞ¼ ða� byÞðb� byÞ (B.1)

When by lies within the interval (a, b), GðbyÞ<0; when by is outside
the interval (a, b), GðbyÞ>0. Based on Eq. (B.1), a penalty term is
constructed within the loss function:

Lŷ ¼ fReLUðGðbyÞ � ε Þ (B.2)

where ε represents the permissible error range, and fReLU stands for
the Rectified Linear Unit (ReLU) activation function which is a
commonly used activation function in artificial neural networks.
ReLU function is typically defined as

fReLUðxÞ ¼ maxðx;0Þ ¼



0; x<0
x; x � 0 (B.3)

This penalty term is designed to ensure that LG ¼ 0 when by falls
within the interval ða � εa;b � εbÞ, and LG >0 when by is outside this
interval. Moreover, the magnitude of LG increases with a larger
deviation from the interval ða � εa;b � εbÞ. The range of values for
m is set to (1.5, 3), with n fixed at 2. Substituting these values into
Eq. (B.2), the penalty terms for constrainingm and n are as follows:
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Lmn ¼
X
i

fReLUðð1:5�miÞð3�miÞ� εÞþ
X
i

fReLU
�
ð2�niÞ2� ε

�
(B.4)
C. Hyper-parameters selection of PIAE

To ensure optimal performance, we conduct a grid search across
a predefined range of critical parameters, including learning rate,
model architecture, and weight l in loss, as shown in Table C.1. The
grid search involved systematically testing all possible combina-
tions of these parameters to identify the configuration that mini-
mizes the loss function and enhances model convergence.
D. Model structure of PIAE

The model architectures for the multi-mineral volume encoder,
multi-mineral volume decoder, and Archie encoder in the PIAE are
specified in Table D.1, Table D.2 and Table D.3.



Table D.3
Archie encoder eAðx;4Þ.

(0) Linear (in_features ¼ 42, out_features ¼ 16)
(1) LeakyReLU ()
(2) Linear (in_features ¼ 16, out_features ¼ 32)
(3) LeakyReLU ()
(4) Linear (in_features ¼ 32, out_features ¼ 16)
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