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a b s t r a c t

The stability of acid-crude oil emulsion poses manifold issues in the oil industry. Experimentally eval-
uating this phenomenon may be costly and time-consuming. In contrast, machine learning models have
proven effective in predicting and evaluating various phenomena. This research is the first of its kind to
assess the stability of acid-crude oil emulsion, employing various classification machine learning models.
For this purpose, a data set consisting of 249 experimental data points belonging to 11 different crude oil
samples was collected. Three tree-based models, namely decision tree (DT), random forest (RF), and
categorical boosting (CatBoost), as well as three artificial neural network models, namely radial basis
function (RBF), multi-layer perceptron (MLP) and convolutional neural network (CNN), were developed
based on the properties of crude oil, acid, and protective additive. The CatBoost model obtained the
highest accuracy with 0.9687, followed closely by the CNN model with 0.9673. In addition, confusion
matrix findings showed the superiority of the CatBoost model. Finally, by applying the SHapley Additive
exPlanations (SHAP) method to analyze the impact of input parameters, it was found that the crude oil
viscosity has the most significant effect on the model's output with the mean absolute SHAP value of
0.88.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the global population keeps growing, there will be an ever-
increasing need for all forms of energy, such as fossil fuels. Ac-
cording to predictions published by Exxon Mobil, the global energy
demand will increase by 25% between 2018 and 2040. Conse-
quently, producing as much crude oil as possible from the existing
reservoirs is crucial (Wojnar, 2018).

In the petroleum production industry, acidizing is known as a
typical well stimulation technique due to its convenience, afford-
ability, and favorable performance. The injected acid can dissolve
plugged channels around the wellbore region and improves pro-
ductivity, leading to an increase in crude oil production. In this
process, the incompatibility between the acid solution (aqueous
phase) and crude oil (organic phases) can cause stable acid-crude
oil emulsion and acts as a serious formation damage. Formation
and stability of acid-in-oil emulsion is one of the main causes of
hammadzadeh@shirazu.ac.ir

y Elsevier B.V. on behalf of KeAi Co
acidizing failure in oil wells and has negative consequences on the
treatment efficacy (Mohammadzadeh Shirazi et al., 2019). Fig. 1
illustrates the happening of this phenomenon during the acidiz-
ing process.

During the acid stimulation process, the shear force created by
the acid injection would act as an external factor for this emulsi-
fication. Some crude oil components such as asphaltene and resin,
known as natural surfactants, tend to accumulate at the emulsion
phase interfaces and inhibit the dispersed acid droplets to cohere
by decreasing the interfacial energy (Alves et al., 2022). As a result,
the interfacial area is not reduced, and a rigid film emulsion is
created (Abbasi and Malayeri, 2022).

In light of the adverse effects that might result from the for-
mation of acid-crude oil emulsion (Fredd and Fogler, 1998; Greene
et al., 1974), evaluating and forecasting this before it happens is
crucial. Determining the stability tendency of this undesirable
emulsion helps prevent this by choosing a suitable acid type and
concentration and using appropriate additives (Abbasi et al., 2024).
For this purpose, researchers have employed experimental ap-
proaches, including centrifugation and the bottle test, to evaluate
emulsion stability (da Silva et al., 2018; Hutin et al., 2016; Umar
mmunications Co. Ltd. This is an open access article under the CC BY license (http://
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Fig. 1. An illustration of acid-in-oil emulsion formation during the acidizing process.
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et al., 2018; Zhang et al., 2016). Additionally, the influence of several
parameters, including crude oil properties like viscosity (Minakov
et al., 2022) and asphaltene and resin content (Alves et al., 2022),
iron concentration especially ferric (Pourakaberian et al., 2021),
acid mixture ratio (AMR) (Mohammadzadeh Shirazi et al., 2019),
and acid type and strength (Kharisov et al., 2012; Rietjens and
Nieuwpoort, 2001), have been investigated on this emulsion sta-
bility. Employing protective additives like anti-emulsion, anti-
sludge, and ferric ion reducer is the main strategy for avoiding this
formation damage (Mohammadzadeh Shirazi et al., 2019).

Although experimental methods are common for evaluation,
they are not always available due to financial or technical limita-
tions and can be time-consuming, so developing advanced models
such as machine learning models can be helpful and practical. In
the last several decades, these novel techniques have been applied
in various scientific fields as trustworthy replacements for expen-
sive experimental investigations due to developments in artificial
intelligence techniques and artificial intelligence (AI) has initiated
the third wave of application (Liu et al., 2022). Regarding this
matter, Deng et al. (2024) developed a hybrid machine learning
optimization algorithm to estimate pore pressure, with the aim of
enhancing drilling safety and efficiency; Pang et al. (2023)
employed machine learning methods for predicting mud loss in
carbonate formation drilling by utilizing seismic features and mud
loss data; Bai et al. (2024) proposed an approachwhich utilizes data
mining methods to find similar oil fields and estimate well pro-
ductionwith machine learning models; Pei et al. (2024) used a fully
connected neural network to accurately forecast the rate of pene-
tration (ROP) with the goal of optimizing drilling operations; Shi
et al. (2023) implemented a mixed-kernel machine learning
approach to identify reservoir types in deep carbonates by using
geophysical logging data; Zhang et al. (2023) proposed a hybrid
neural network model based on the convolutional neural network
(CNN) and gated recurrent unit (GRU) to predict bottom hole
pressure (BHP) fluctuations.

A significant number of intelligent methods have been devel-
oped to predict reservoir formation damage. Zuluaga et al. (2002)
have implemented an artificial neural network (ANN) and fuzzy
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logic to assess the impact of invasion by foreign particles on
permeability decline in poorly consolidated rock. In order to predict
permeability decline, the ANN performed best among applied
models by using flow rate, initial porosity, initial permeability, and
particle concentration. Rezaian et al. (2010) have evaluated the
formation damage due to the deposition of asphaltene using ANNs.
The ANN model estimated permeability decline utilizing asphal-
tene concentration, initial permeability, injection duration, and
velocity with an average absolute percent relative error (AAPRE) of
0.83. In another study, Foroutan and Moghadasi (2013) have used
an artificial neural network model to forecast relative permeability
during precipitation of minerals to forecast relative permeability
during mineral precipitation, achieving an average error of around
5%. Kamari et al. (2014) have implemented a least squares support
vector machine model to predict the deposition of barium sulfate
over a range of temperatures and concentrations of NaCl. The
average absolute relative deviation of the proposed model was
0.0002%. In order to determine the volume andmass of formed acid
sludge, Pourakaberian et al. (2021) have implemented an ANN us-
ing compatibility tests. The generated model had a correlation co-
efficient of 0.9458 for all data. In recent research on formation
damage, Shakouri and Mohammadzadeh-Shirazi (2023) have
developed four different machine learning models with the pur-
pose of predicting asphaltic sludge formation. In this context, it was
demonstrated that the MLP model with a correlation coefficient of
0.9517 had superior performance than other models in predicting
asphaltic sludge formation.

Some attempts have been made to assess emulsions' stability in
several fields using machine learning-based methods. de Souza
et al. (2007) used an artificial neural network model to predict
water-oil emulsion stability. The proposed model was able to pre-
dict the emulsion breaking height with a coefficient of determi-
nation of 0.899. Yetilmezsoy et al. (2011) developed a machine
learning model called adaptive neuro-fuzzy inference system
(ANFIS) to predict the stability of water-oil emulsion using oil
properties with a coefficient of determination of 0.967. Kumar et al.
(2011) implemented a model based on an ANN method to predict
the stability of oil-water emulsion and identify the critical
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concentrations of fatty alcohol with a coefficient of determination
of 0.8920. Lee et al. (2022) used machine learning-based models to
predict bilgewater emulsion stability. Several classification and
regressionmodels were employed, amongwhich the random forest
(RF) model with a F1 Score of 0.8244 and the decision tree (DT)
model with mean absolute error (MAE) of 0.1611 performed the
best, respectively. The proposed models indicate the ability of
machine learning-based models in reliably predicting the stability
of emulsions.

To the best of the authors' knowledge, no priormachine learning
model has been developed for the prediction of acid-oil emulsion
stability. A thorough literature review in the field of machine
learning-based estimation of formation damage highlights a
requirement to construct and propose a model for determining the
stability class of acid-oil emulsion to prevent formation damage in
the acidizing process. The present study aims to develop machine
learning-based models to assess the stability of acid-crude oil
emulsion. In order to accomplish this aim, 249 acid-crude oil
emulsion stability data points are collected from bottle tests under
the same experimental procedure at various crude oil properties,
acid properties, and the amount of protective additives. The dataset
is utilized to implement three tree-basedmachine learningmodels,
namely decision tree (DT), random forest (RF), and categorical
boosting (CatBoost), as well as three artificial neural network
models, namely radial basis function (RBF), multi-layer perceptron
(MLP) neural network, and convolutional neural network (CNN).
Following the completion of model development, the models un-
dergo validation using various statistical and graphical techniques.
Ultimately, the SHapley Additive Explanations (SHAP) approach is
applied to analyze the impact of input factors.

2. Acid-oil emulsion and data acquisition

Understanding the basic mechanisms of the phenomena is
beneficial for selecting model inputs, which leads to more accurate
and effective modeling. To achieve this objective, the mechanisms
governing the formation of acid-crude oil emulsion are first
described, followed by a description of the data set used.

2.1. Mechanism of acid-oil emulsion formation

The formation of stable acid-crude oil emulsion is undesirable
because of its technical and financial consequences in the acid
treatment process. Acid and crude oil, as two immiscible phases,
form emulsions when enough shear force is exerted through mix-
ing (Abbasi et al., 2023). The stability of this emulsion is from
natural surfactants present in the crude oil called asphaltene and
resin, which move towards the acid-oil emulsion interface and
accumulate on it. Initially, this adsorption reduces the interfacial
tension. With continuous accumulation of surfactants at the
interface, a monolayer forms. This layer acts as a protective film,
preventing direct contact and coalescence of droplets. Upon for-
mation of this protective layer at the interface, further adsorption at
this stage does not alter surface tension, and the emulsion is sta-
bilized. (Abbasi et al., 2024). Also, ferric ion promotes this phe-
nomenon due to its activity as a phase transfer catalyst for acid-
base reactions (Kalhori et al., 2022). Fig. 2 illustrates the exact
mechanism that causes this phenomenon to occur. Preventive ad-
ditives including anti-sludge, anti-emulsion, and iron reducer
hinder the stability of acid-crude oil emulsion (Abbasi et al., 2024;
Mirvakili et al., 2012). According to the mechanism, this phenom-
enon could be affected by the viscosity of crude oil, saturate to
aromatic ratio, asphaltene to resin ratio, acid concentration, acid to
mixture ratio, amount of ferric ion, anti-sludge agent, anti-
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emulsion agent, and ferric reducing agent (Abbasi and Malayeri,
2022). The stability of an acid-crude oil emulsion can be esti-
mated prior to the acid treatment process by using advanced
models such as machine learning models and these effective input
parameters.
2.2. Data acquisition

In this study, we conducted experiments to collect reliable data
for themodels. The compatibility bottle testswere done using some
modifications of the standard technique established by API Rec-
ommended Practice 42 (American Petroleum Institute. Production
Department, 1977), which is accurate for quantitatively evaluating
acid-oil emulsion stability (Mohammadzadeh Shirazi et al., 2019).
These experimental data have been published in the literature
(Abbasi et al., 2023; Mohammadzadeh Shirazi et al., 2019;
Pourakaberian et al., 2021). Hydrochloric acid was chosen as the
desired acid, and the percentage of the acid that separated from the
mixture was recorded. Fig. 3 illustrates the process of preparing
emulsions and the method of classifying them. We have chosen
time of 120 min for the stability measurement, as this is the most
suitable time to determine whether the emulsion remains stable or
not. Moreover, significant changes do not occur beyond 120 min is
due to the formation of amonolayer, which stabilizes the emulsions
relatively. In the early minutes, the stability of the emulsion can be
uncertain because the system is still changing and the protective
layer around the acid droplets may not yet be fully formed.

In order to confirm the accuracy and applicability of the model,
11 different samples of crude oil containing a broad range of SARA
fractions were employed. The chemical and physical characteristics
of the crude oil samples are detailed in Table 1. It is worth
mentioning that the crude oil samples used in our study were
selected based on their rheological properties, and they exhibited
Newtonian behavior.

Basically, the acid-oil compatibility test is not highly repeatable,
and the results of studies have shown some variation in the repe-
tition of this test (Abbasi et al., 2023; Mohammadzadeh Shirazi
et al., 2019); hence, it is more appropriate to provide a phase sep-
aration range to make up for this limitation. Moreover, in most
cases, the emulsion is either completely stable or unstable, and in a
few cases, it is placed outside of these two classes (Pourakaberian
et al., 2021). Therefore, the most appropriate way to model this
phenomenon is to classify it. For this purpose, the data was clas-
sified into four classes. As seen in Fig. 4, the data classification
method is shown in Fig. 4(a), and the percentage of data in each
class is shown in Fig. 4(b). Also, to expand the capabilities of the
developed models, some experiments were done using the pre-
ventative additives and applied in the models. Table 2 describes the
characteristics of the used additives.

The collected dataset contains 249 experimental data points.
Each row of data includes values for crude oil viscosity, saturate to
aromatic ratio, asphaltene to resin ratio, acid concentration, acid to
mixture ratio, mass concentration of ferric ion, anti-sludge agent,
anti-emulsion agent, and ferric ion reducing agent. Table 3 shows a
statistical evaluation of the input data. In the present study, the
synthetic minority oversampling (SMOTE) strategy was used to
deal with the issue of imbalanced data. The SMOTE is an efficient
resampling approach that has proven useful in a wide range of
applications (Zhang et al., 2020). The SMOTE technique extends the
original dataset by creating synthetic data points based on feature
space (Chawla et al., 2002).



Fig. 2. The sequence of events leading to the formation of a stable acid-crude oil emulsion.

Fig. 3. The process of preparing emulsions and the classification of them based on phase separation.

Table 1
Characteristics of the crude oil samples in the dataset.

Sample SARA Analysis Sa/Ar As/Re Specific gravity (@ 25 �C) Viscosity, cp (@ 25 �C) Density (�API)

Sa Ar Re As

A 45.04 40.49 6.23 8.24 1.1123 1.3226 0.9164 101.5 22.91
B 63.96 25.33 9.06 1.65 2.5250 0.1821 0.8731 25.20 30.57
C 49.93 39.12 7.95 3.00 1.2763 0.3773 0.8952 33.60 26.57
D 66.97 27.18 5.65 0.20 2.4639 0.0353 0.8711 18.20 30.94
E 47.25 39.93 7.61 5.21 1.1833 0.6846 0.9194 78.20 22.40
F 45.09 31.50 7.70 14.9 1.4314 1.9350 0.9330 2960 19.00
G 48.75 38.32 6.95 5.98 1.2721 0.8604 0.8903 80.30 27.40
H 43.4 35.6 12.9 8.1 1.2191 0.6279 0.9432 466.9 18.52
I 54.7 25.9 14.7 4.7 2.1119 0.3197 0.9178 131.2 22.67
J 52.8 31.7 9.7 5.8 1.6656 0.5979 0.9459 96.54 18.09
K 47.6 31.7 17.0 3.7 1.5015 0.2176 0.9159 121.8 22.99
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3. Methodology

In the field of machine learning, tree-basedmodels are a popular
and widely used approach owing to the many benefits they pro-
vide, including their simplicity and interpretability. In contrast,
although artificial neural network-based models are challenging to
comprehend and interpret, they have a remarkable ability to learn
897
and model nonlinear and complex relationships. In this regard,
three tree-based models, including decision tree (DT), random
forest (RF), and categorical boosting (CatBoost), as well as three
artificial neural network models, including radial basis function
(RBF), multi-layer perceptron (MLP) neural network, and convolu-
tional neural network (CNN), were applied. In this part, the models
are presented in detail, and the process of developing and



Fig. 4. Data classification method (a) and percentage of data in each class (b).

Table 2
The acid-oil emulsion protective additives used in the dataset with their chemical structure.

Name Schematic molecular structure

Anti-sludge (Dodecyl benzene sulfonic acid (C18H30O3S))

Ferric reducing agent (Erythorbic acid (C6H8O6))

Anti-emulsion (N-alkylated polyhydroxyetheramines (NRO2H2))

Table 3
The statistical evaluation of the data set employed in the present research.

Parameter Maximum Minimum Standard deviation Average

Asphaltene/Resin 1.935 0.0353 0.5529 0.6128
Saturate/Aromatic 2.525 1.112 0.5308 1.6704
Viscosity of crude oil, cP 2960 18.2 924.5207 430.6635
AMR, cc/cc 0.84 0.16 0.1487 0.5
Acid concentration, wt.% 32.5 10.5 4.9186 17.6626
Ferric ion, mg/L 3000 0 1066.248 1602.3453
Ferric reducing, wt.% 0.5 0 0.1502 0.0502
Anti-emulsion, wt.% 1 0 0.2424 0.1024
Anti-sludge, wt.% 1 0 0.2360 0.923
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evaluating them is described. In order to estimate the stability of
acid-oil emulsion, after collecting and pre-processing the data,
statistical and graphical analysis is performed to assess the devel-
oped models. In addition, to determine the impact of the input
parameters, the relevance factor is calculated to clarify the rela-
tionship between the input parameters and model output. The
chain of activities performed in this study is shown in Fig. 5.
3.1. Machine learning

Machine learning is a scientific field that concentrates on
creating models with the capacity to learn patterns based on pre-
vious data without being specifically programmed (Samuel, 1959).
898
In conventional programming, the user provides the computerwith
data and rules; the computer then uses these to determine an
intended result. In contrast, in the field of machine learning, the
model receives data and answers, and the rules are the outcome.
Thus, thismodel predicts the answer for new data using the learned
rules.

A machine learning model can learn in different ways depend-
ing on the type of data set; as seen in Fig. 6, supervised learning,
unsupervised learning, semi-supervised learning, and reinforce-
ment learning are the main methods of machine learning models.
The most common method for machine learning is supervised
learning, which involves providing the model with data in the form
of labeled samples. The model learns the pattern of the relations



Fig. 5. The chain of activities performed to develop and evaluate the models in this study.

Fig. 6. Types of learning methods for a machine learning model. As highlighted, the
supervised classification method was used in this study.
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between input data and sample labels during training. Two types of
supervised learning are classification and regression (Qiao et al.,
2020). In predictive classification modeling, after using the data
to train the model, the new data can be classified (Alpaydin, 2020).
In this study, supervised classification models were used, and the
developed models are described as follows.
3.2. Decision tree (DT)

The DT model is a supervised tree-based algorithm that is used
for both regression and classification purposes (Geurts et al., 2009).
The DT method has many notable benefits, including minimal data
preparation requirements and optimal performance on huge data
sets (Yang and Fong, 2013). There are four parts to this algorithm:
First, the root node, which is the starting point of the tree and
contains the input data. In the end, the leaf nodes form the flow-
chart's endpoint and indicate the system's output. In addition, the
internal nodes are located between root and leaf nodes, and the
branches that connect the nodes. A schematic illustration of the DT
model's framework is shown in Fig. 7.

In the DT method, splitting, stopping, and pruning are the three
main techniques for creating a tree (Song and Lu, 2015). Beginning
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with the root node, the input data is split into decision nodes and
branches. The splitting operation continues until a stopping
requirement is satisfied. In addition, the pruning procedure in-
volves eliminating the low-value branches (Patel and Upadhyay,
2012).
3.3. Random forest (RF)

As has been explained, despite the many advantages of DT, it
also has some disadvantages. One main disadvantage is the possi-
bility of overfitting. DTs frequently exhibit high variance and low
prediction bias, a condition known as over-fitting, which allows the
model to detect small perturbations and random noise in the
training sample. In addition, the overall DT may not be optimal
because this model ignores the global optimum (Liu et al., 2023b).
The problems mentioned above can be solved using ensemble
techniques, combining the outcomes from various trees into one
conclusion (Brieuc et al., 2018). RF is a DTensemble learning system
in which every tree is trained simultaneously (Yan et al., 2023). In
RF, the greedy method defines the significance of each tree at every
stage (Wu and Misra, 2019). Additionally, RF can assess the signif-
icance of a feature and keep the most useful input information of a
feature (Shaikhina et al., 2019). Fig. 8 depicts the basic structure of
the RF model.

The RF approach uses a procedure called bagging that enhances
the variety of the trees and variable selection. The algorithm will
decide how to split the data it receives to several datasets according
to the number of the provided trees.
3.4. Categorical boosting (CatBoost)

The categorical gradient boosting method known as CatBoost
uses binary decision trees as its main predictors (Prokhorenkova
et al., 2018). This approach functions with minimal loss of infor-
mation for categorical features. The difference between training
and testing datasets is the most important concept for the CatBoost
approach (Hancock and Khoshgoftaar, 2020). Furthermore, the in-
dicator function 1 is a key concept to comprehend how CatBoost
categorical features are encoded, which is defined as follows
(Hancock and Khoshgoftaar, 2020):

Indicator function 1k;t ¼
�

1; if k ¼ t
0; otherwise (1)

The function mentioned above is a critical component of the
formula employed by CatBoost for converting the category



Fig. 7. Schematic illustration of a DT model.

Fig. 8. The basic structure of the RF model.
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variables into number values. Also, the CatBoost algorithm uses
categorized columns to boost performance. The two most impor-
tant are One-Hot-Max-Size and target-based statistics, which are
applied in this work. The basic phases in the CatBoost method
include forming a random set of variables, converting labels to
900
numbers, and transforming features into numerical values (Abdi
et al., 2021). To prevent overfitting, the CatBoost methode em-
ploys random permutations for predicting leaf values during
selecting the tree structure, which gives it an important advantage.
The basic framework of the CatBoost model is shown in Fig. 9.



Fig. 9. The basic framework of the CatBoost model.
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3.5. Radial basis function (RBF) neural network

The radial basis function neural network is a popular model of
neural networks used in classification and regression issues. In fact,
the concept of RBF neural networks originates from the mathe-
matical theory of function approximation (Liu et al., 2023a). By
transforming the data into a space with more dimensions, RBF can
process and provide accurate solutions for every issue involving
scattered and multivariate data (Broomhead and Lowe, 1988). RBF
neural networks typically have a three-layer architecture with just
one hidden layer between the input (first) and output (third) layers
(Hemmati-Sarapardeh et al., 2018). Fig. 10 depicts a graphical
illustration of the RBF structure implemented in this study. In RBF,
radial basis functions fiðxÞ are used for computing regression on a
function f ðxÞ. This regression is obtained using linear superposition
of basis functions. f ðxÞ can be calculated as follows (Broomhead and
Lowe, 1988):

f ðxiÞ¼wTfðxiÞ þ b (2)

where wT is the output layer weight, fðxiÞ denotes the transfer
function, and b defines the bias. During the RBF model develop-
ment process, various radial basis transfer functions can be
implemented; however, the Gaussian function is the most
commonly employed radial basis function in the RBF neural
network (Xia et al., 2023). In this study, the Gaussian function was
used, which is defined as follows (Hemmati-Sarapardeh et al.,
2019):

fðrÞ¼ exp
�

r2

2s2

�
with s>0 (3)

where s denotes the spread coefficient.
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3.6. Multi-layer perceptron (MLP) neural network

One of the most well-known kinds of artificial neural networks
is the multi-layer perceptron (MLP), which is a sort of feedforward
artificial neural network with multiple layers (Wasserman and
Schwartz, 1988). The initial layer is the input layer, and it is
responsible for receiving input data, the output layer is the last
layer of the model which represents the model's output, and the
hidden layers are the layers in between, which are used for data
processing (Kiannejad Amiri et al., 2023; Lashkarbolooki et al.,
2012). To determine each neuron's value in the hidden layers or
output, the value of each neuron in the previous layer is multiplied
by its related specific weight and added together, and a bias is
added to these values (Gao et al., 2022). Finally, an activation
function is applied to the obtained value (Mohammadi et al., 2021).

Each input layer in a MLP model has the same number of neu-
rons as the number of input parameters, and the output layer has
the same number of neurons as the existing classes. Hence, in this
study, due to the presence of 4 different classes, the last layer in-
cludes 4 neurons. The number of hidden layers and their neurons
must be tuned in order to create an accurate and robust MLP model
(Khamehchi et al., 2020). The efficacy of neural network models is
significantly affected by optimization strategies (Hagan and
Menhaj, 1994). In order to achieve this goal, an optimization tech-
nique called Adam's, which is one of the most well-known opti-
mization algorithms of artificial neural networks (Kingma and Ba,
2014), was used in the present study. The schematic of the MLP
model constructed for the present research is shown in Fig. 11.

3.7. Convolutional neural network (CNN)

In recent years, convolutional neural networks (CNNs) have
attracted a lot of attention due to their impressive performance in
fields including classification, image processing, and pattern
recognition (Albawi et al., 2017). Compared to other artificial neural
networks, CNNs reduce parameters, which is a significant advan-
tage (Lv et al., 2023). The schematic of the CNN algorithm is shown
in Fig. 12. Two of the most significant concepts behind the CNN
network are the convolutional phase and the fully-connected
phase. In the convolution phase, features are calculated in multi-
dimensional sequences, and values are computed by convolution of
conveyed data obtained from the previous step and filter window
(kernel). The conveyed data is processed from left to right and top
to bottom by the filter screen. A set of features selected from the
dataset forms a feature map (Xue et al., 2024).

3.8. Procedure of model development

The first step for developing machine learning models is to
select training and testing subsets. The data in this research were
randomly divided to avoid bias and intention in the process of
selecting subsets. In order to establish training and testing subsets,
80% of the data was assigned for training, and 20% was assigned for
testing. Then, the hyperparameter values were chosen for model
development. Model performance is significantly affected by the
selection of hyperparameter values. The main aim of setting
hyperparameters is to identify suitable hyperparameter values to
obtain the highest performance of any machine learning model
(Castro-Amoedo et al., 2024). Employing the Randomized Search
technique is one of the most common ways to achieve this aim
(Pedregosa et al., 2011), which was employed in this research. In
brief, in the first stage, the specific hyperparameters associated
with the desired algorithm are identified, and then the range of
search values is determined. In the last stage, the final model is
constructed based on the optimal set of hyperparameters. In



Fig. 10. A schematic illustration of the developed RBF model.

Fig. 11. A schematic illustration of the developed MLP model.

Fig. 12. A schematic illustration of the CNN algorithm.
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Table 4
The optimal hyperparameter values for the tree-based models.

Hyperparameter Search range Model

DT RF CatBoost

max_depth 5e50 11 16 e

max_leaf_nodes 10e140 82 70 e

n_estimators 20e2500 e 560 e

max_features 'Sqrt', 'log 20 , 1, 2, 3 e 1 e

iterations 20e2000 e e 1000
learning_rate 0.01e1.5 e e 1.258
depth 2e20 e e 7
l2_leaf_reg 2e20 e e 4
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addition, the cross-validation strategy was applied, where data
sampling methods such as cross-validation are often used for un-
biased evaluation of models during the model development pro-
cess (Berrar, 2019).

3.9. Performance evaluation of models

In this study, to confirm the validity of each model, the models
were evaluated using several criteria. The evaluation criteria are
divided into two groups: statistical and visual evaluation, which are
described below.

3.9.1. Statistical evaluation
In order to evaluate the developed models, Accuracy, Precision,

Recall, and F1 Scoremetrics were used, which are defined as follows
(Garud et al., 2018; Liu et al., 2023c):

Accuracy¼ TP þ TN
TP þ TN þ FP þ FN

(4)

Where TP stands for true positive, FP for false positive, FN for false
negative, and TN for true negative, the definition of Accuracy is the
ratio of samples that were predicted correctly to the whole number
of samples.

Precision¼ TP
TP þ FP

(5)

Precision is measured by the ratio of correctly predicted positive
samples to all predicted positive samples.

Recall¼ TP
TP þ FN

(6)

Recall of a classification system is measured by the ratio of the
number of correctly predicted positive samples to the total number
of samples relating to that class.

F1 Score¼2� Precision� Recall
Precisionþ Recall

(7)

The weighted average of Precision and Recall gives F1 Score. All
of the aforementioned criteria range from 0 to 1, with the closer to
1, the better the model's performance.

3.9.2. Visual evaluation
The confusion matrix is a table that describes the performance

of a classification machine learning model. Confusion matrices are
useful for visualizing the results of a classification model (Dobos
et al., 2023; Singh et al., 2021). With n output classes in the
model, the confusion matrix will be a n� n matrix. The diagonal
elements in the confusion matrix indicate how many samples of
each class are correctly classified in the test data. On the other hand,
non-diagonal elements indicate incorrect predictions. Therefore,
the most accurate classifier will have a confusion matrix consisting
completely of diagonal elements and zero for non-diagonal (Arjaria
et al., 2021). In addition, the superior model was interpreted using
the SHAP method. SHAP is a method based on coalitional game
theory that is used for explaining the machine learning models
(Lundberg and Lee, 2017). This method was applied to evaluate the
impact of input parameters.

4. Results and discussion

The main focus of this research is the analysis of the accuracy
and validity of the developed models, as well as comparing the
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performance of tree-based and artificial neural network-based
models. This section is divided into three parts: 1- results for
selecting the most optimal hyperparameters of each proposed
model, 2- evaluation and comparison of the models using various
graphical and statistical metrics, 3- analyzing the most accurate
model based on SHApley Additive Explanations (SHAP).

4.1. Development of the models

The DT, RF, CatBoost, RBF, MLP, and CNN models were used to
predict the stability of acid-oil emulsion. The grid search method
was applied to select the most optimal values of hyperparameters
(Dong et al., 2023). The type of hyperparameter, the search range,
and the optimum value obtained are presented in Tables 4 and 5.
Also, the 10-fold cross-validation technique was served in the
development and evaluation of the models.

4.2. Evaluation of the models

Various criteria were used to analyze and evaluate the model's
reliability, which are presented in two sections: statistical evalua-
tion and visual evaluation.

4.2.1. Statistical evaluation
In order to properly evaluate the performance, four statistical

criteria, including Accuracy, Precision, Recall, and F1 Score were
used for training, testing, and total data sets. The results are re-
ported in detail in Table 6. The analysis of statistical criteria results
for tree-based and artificial neural network models is described as
follows:

4.2.1.1. Tree-based models. According to Table 6, the most success-
ful tree-based algorithm was CatBoost, which predicted the emul-
sion stability classes with an Accuracy of 0.9687, followed by RF and
DT models with an Accuracy of 0.9583 and 0.9270. The other sta-
tistical criteria, including Precision, Recall, and F1 Score values, were
0.9691, 0.9687, and 0.9686 for the CatBoost model, respectively,
which shows its superiority. In addition, the slight difference be-
tween Accuracy, Precision, Recall, and F1 Score values proves the
trustworthiness of the CatBoost model. Also, the small gap between
training and testing accuracy indicates that the models have not
been over-fitted and are reliable.

4.2.1.2. Artificial neural network models. Table 6 shows that the
CNN model provided the highest performance with an Accuracy of
0.9673 among the neural network models. The MLP and RBF
models provided lower performance with the Accuracy of 0.9583
and 0.9479, respectively. The obtained values of 0.9688 for
Precision, 0.9573 for Recall, and 0.9675 for F1 Score all confirm the
superiority of the CNN model. In addition, the insignificance of the
difference between the training and testing Accuracy of neural



Table 5
The optimal hyperparameter values for the artificial neural network models.

Hyperparameter Search range Model

MLP RBF CNN

learning_rate 0.001e0.9 0.012 0.008 0.0011
loss function Categorical cross-entropy Categorical cross-entropy Categorical cross-entropy Categorical cross-entropy
Hidden layers activation function [sigmoid-ReLU- Gaussian-LeakyReLU] ReLU Gaussian LeakyReLU
Output layer activation function Softmax Softmax Softmax Softmax
1st Hidden layer size 1e120 20 95 16
2nd Hidden layer size 1e120 45 e 48
1st Convolutional layer filters 1e256 e e 32
2nd Convolutional layer filters 1e256 e e 64
3rd Convolutional layer filters 1e256 e e 128
Epoch 100e1000 400 300 400
Batch size 4e64 8 8 8
Kernel size 1e6 e e 3

Table 6
Calculated the statistical criteria for the implemented models.

Criteria Data set Tree-Based model Artificial neural network
model

DT RF CatBoost MLP RBF CNN

Accuracy Train 0.9479 0.9635 0.9713 0.9609 0.9635 0.9716
Test 0.9270 0.9583 0.9687 0.9583 0.9479 0.9673
Total 0.9437 0.9625 0.9708 0.9604 0.9604 0.9708

Precision Train 0.9500 0.9641 0.9721 0.9618 0.9663 0.9730
Test 0.9347 0.9587 0.9691 0.9609 0.9516 0.9688
Total 0.9464 0.9627 0.9713 0.9615 0.9632 0.9716

Recall Train 0.9479 0.9635 0.9713 0.9609 0.9635 0.9716
Test 0.9270 0.9583 0.9687 0.9583 0.9479 0.9673
Total 0.9437 0.9625 0.9708 0.9604 0.9604 0.9708

F1 Score Train 0.9483 0.9635 0.9714 0.9610 0.9636 0.9717
Test 0.9287 0.9576 0.9686 0.9582 0.9487 0.9675
Total 0.9443 0.9624 0.9709 0.9605 0.9606 0.9709
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network models indicates that the models were not overfitted and
are reliable. Fig. 13 demonstrates the Accuracy of the models
comparatively. As can be seen, the CatBoost model has the highest
Accuracywith 0.9687, followed by the CNNmodel with an Accuracy
of 0.9673 with a slight difference.
Fig. 13. Comparison of the developed models' Accuracy.
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4.2.2. Visual evaluation
In order to evaluate the developed models more deeply, visual

evaluation was performed using the confusion matrix. The confu-
sion matrix is a two-dimensional plot that shows actual and pre-
dicted labels on two axes. This graph shows the percentage of
correctly and incorrectly labeled samples for stable, high stability,
low stability, and unstable classes. Fig. 14 shows the confusion
matrices for all the tree-based and artificial neural networkmodels.
In the following, the results of confusion matrices are examined.

4.2.2.1. Tree-based models. Fig. 14 shows that the correct classifi-
cation of tree-based models is higher than 92% for each of the four
classes. Especially for stable and unstable classes, which are the
most important ones, the correct classification of 95% and higher
was achieved. In addition, the confusion matrix proves the supe-
riority of the CatBoost model, which has the highest accuracy in
three classes. It can also be seen that the DT model has classified
7.5% of the data in the unstable class instead of the high stability
class, which shows the highest error in the classification of this
class.

4.2.2.2. Artificial neural network models. According to Fig. 14, it can
be seen that all artificial neural network models have a correct
classification of 90% and higher for all four classes. These models
have an accuracy of 91.66% and higher for stable and unstable
classes. According to the confusion matrix results, it has been
proved that the CNNmodel has the best performance among all the
neural network models. In addition, the RBF model classified 10% of
the data in the unstable class instead of the high stability class,
which shows the highest error in the classification of this class.

Generally, the confusion matrices revealed specific mis-
classifications that highlight areas for improvement. For the Deci-
sion Tree (DT) model, a notable misclassification occurred where
7.5% of unstable samples were incorrectly categorized as having
high stability. This can be attributed to the model's tendency to
overfit to patterns in the training data, which may not generalize
well to new data. Similarly, the Radial Basis Function (RBF) model
showed a 10% error rate for unstable samples, incorrectly labeling
them as high stability, indicating its struggle with capturing non-
linear relationships between features and labels. Mis-
classifications between high stability and unstable classes indicate
a need for expanding the training dataset to enhance the models'
ability to distinguish between different classes.

In order to visualize the performance of the developedmodels, a
quadrilateral diagram was drawn based on the accuracy of each
class. As shown in Fig. 15, CatBoost and CNN models cover almost
the same area, and their better performance than other models is
proven.



Fig. 14. Confusion matrices of the developed models.

Fig. 15. Quadrilateral diagram of the developed models based on the accuracy of each class.
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4.2.3. Computational efficiency: training time comparison
In this section, the training times of different models used in the

study are compared. The system configuration for this evaluation is
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as follows: Intel(R) Core(TM) i5-8350U CPU@1.70GHz, 1.90 GHz,
16.0 GB RAM, and Python version 3.13. The total training times for
each model are presented in Table 7.

mailto:CPU@1.70GHz


Table 7
The total training time of the models developed in this research.

Model Total training time, s

Decision Tree 0.1340
Random Forest 10.2199
Categorical Boosting 80.7828
Radial Basis Function 437.5897
Multi-Layer Perceptron 525.6515
Convolutional Neural Network 2227.7067
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As shown in Table 7, there is a clear distinction between the total
training time of tree-based models and Artificial neural network
models. Tree-based models such as DT and RF exhibited signifi-
cantly lower training times due to their simpler structures. Cat-
Boost model, although more complex, still maintains a relatively
low training time of 80.7828 s. Conversely, ANNs like MLP, RBF, and
CNN require substantially longer training times due to their com-
plex architectures. Despite the lengthy training time, CNN achieved
an accuracy comparable to CatBoost. However, CNN's training time
was approximately 27.6 times longer than CatBoost's. This high-
lights the increased computational requirements associated with
more complex models like CNNs. In larger datasets, the resource
demands of such models become even more pronounced, affecting
their efficiency.
4.3. Impact of input parameters

It is beneficial to identify which dataset parameters play a sig-
nificant role in the formation of acid-oil emulsion. According to the
results of the statistical and graphical analysis, the CatBoost model
was the superior model, and the prediction results of this model are
used to analyze the input data. SHAP value provides a method to
rank the importance of input parameters on the ML model's output
(Meng et al., 2023). The mean absolute SHAP value of each input
parameter is used to calculate the importance index, which rep-
resents the average influence of input parameters. In this method, a
higher mean absolute SHAP value indicates greater importance
(Yao et al., 2023). Fig. 16 represents the importance of the feature
for the acid-oil emulsion probability class. It can be seen that crude
oil viscosity, ferric ion, anti-emulsion additive, and acid
Fig. 16. Ranking the importance of input parameters based on the mean absolute SHAP
value.
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concentration with the mean absolute SHAP values of 0.88, 0.83,
0.81, and 0.75 are the most important input parameters, respec-
tively. Previous studies have revealed that crude oil viscosity, ferric
ion concentration, and acid concentration play a crucial role in the
formation and stabilization of acid-oil emulsion (Abbasi et al.,
2023; Mohammadzadeh Shirazi et al., 2019; Taylor et al., 1999).
On the other hand, AMR and saturate/aromatic parameters have
relatively lower mean absolute SHAP values of 0.62 and 0.64,
respectively, while they are still important due to their high values.

Finally, implementing machine learning-based models provides
two significant advantages: One is giving a tool for rapid decision-
making, which is especially helpful when there is a lack of time to
undertake compatibility tests. Through machine learning models,
the stability class of acid-oil emulsion can be accurately predicted;
furthermore, the suitable amount of additives and the acid con-
centration can be found. Two, the optimal values of effective pa-
rameters to control the acid-oil emulsion will be determined
without bias. In other words, based on previous experiences, the
most suitable values are chosen to control the stability of the
emulsion; consequently, errors made by experts or biased decisions
cannot influence the results.

5. Limitations and future work

While this study offers findings and insights into the application
of machine learning models for predicting acid-oil emulsion sta-
bility, it is essential to acknowledge certain limitations. One sig-
nificant limitation is the size of our dataset. Although 249 data
points were sufficient to develop and validate our models,
expanding the dataset could enhance model accuracy and reduce
errors as the models would learn more patterns. Future research
should consider expanding the dataset to include a broader range
of crude oil and acid properties.

Additionally, gathering data that measures the impact of tem-
perature or other influential features could further refine our
models and improve their precision. Futurework could also explore
alternative hyperparameter optimization methods beyond Grid
Search, such as Genetic Algorithms, to efficiently navigate the
hyperparameter space and potentially uncover more optimal con-
figurations. This approach could lead to enhanced performance and
robustness of the models.

6. Conclusion

In this study, the application of machine learning methods to
assess the acid-oil emulsion stability was investigated for the first
time. For this purpose, three tree-based algorithms and three
artificial neural network algorithms were developed using a data
set consisting of 249 experimental data points obtained through a
particular experimental methodology. Several statistical metrics
and visual evaluations were applied to evaluate the performance of
the models. The following findings are obtained.

1. In the category of tree-based models, the CatBoost model pre-
dicted stability with an Accuracy of 0.9687, as the most accurate
model, followed by the RF and DT models, with an Accuracy of
0.9583 and 0.9270, respectively.

2. In the category of neural network-basedmodels, the CNNmodel
predicted stability with an Accuracy of 0.9673 as the most ac-
curate model, followed by the MLP and RBF models, with an
Accuracy of 0.9583 and 0.9479, respectively.

3. Comparing the implemented models' results showed that the
CatBoost model was the most accurate. Nevertheless, it is worth
noting that the Accuracy of the CNNmodel was very close to this
and can be advised. Generally, tree-based models are more
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understandable, quicker, and have lower computational costs
than neural network-based models.

4. According to the confusion matrix, both CNN and CatBoost
models showed similar results; both models correctly classified
the total data for all four classes by more than 95%. In addition,
both models incorrectly classified only 0.83% of the total data
into unstable class instead of stable.

5. The implementation of the SHAP method revealed that all the
features influenced the stability of acid-crude oil emulsion.
Additionally, all features were identified as significant, and none
of them were found to be redundant. Nonetheless, it was
discovered that crude oil viscosity, ferric ion, anti-emulsion
additive, and acid concentration with the mean absolute SHAP
value of 0.88, 0.83, 0.81, and 0.75, respectively, were the most
important features.

The findings have proved that implementing machine learning-
basedmodels provides a quick instrument for operational decision-
making and finding optimal values. In order to improve reliability,
future research can be concentrated on expanding the dataset and
evaluating the performance of various machine learning
algorithms.
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