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a b s t r a c t

The brittleness index (BI) is crucial for predicting engineering sweet spots and designing fracturing
operations in shale oil reservoir exploration and development. Seismic amplitude variation with offset
(AVO) inversion is commonly used to obtain the BI. Traditionally, velocity, density, and other parameters
are firstly inverted, and the BI is then calculated, which often leads to accumulated errors. Moreover, due
to the limited of well-log data in field work areas, AVO inversion typically faces the challenge of limited
information, resulting in not high accuracy of BI derived by existing AVO inversion methods. To address
these issues, we first derive an AVO forward approximation equation that directly characterizes the BI in
P-wave reflection coefficients. Based on this, an intelligent AVO inversion method, which combines the
advantages of traditional and intelligent approaches, for directly obtaining the BI is proposed. A TransU-
net model is constructed to establish the strong nonlinear mapping relationship between seismic data
and the BI. By incorporating a combined objective function that is constrained by both low-frequency
parameters and training samples, the challenge of limited samples is effectively addressed, and the
direct inversion of the BI is stably achieved. Tests on model data and applications on field data
demonstrate the feasibility, advancement, and practicality of the proposed method.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the gradual transition of the energy structure, unconven-
tional hydrocarbon reservoirs, primarily represented by shale oil
reservoirs, have emerged as key targets for oil and gas exploration
and development. Despite their immense resource potential, shale
oil reservoirs pose challenges due to their low porosity and
permeability, making it difficult to achieve efficient shale oil
extraction through natural percolation. Therefore, fracturing
modification is often necessary to enhance the percolation area,
ultimately improving extraction efficiency and final yield. Identi-
fying the brittleness of shale oil reservoirs is a prerequisite for
determining the fracturing locations, which are also named engi-
neering sweet spots. The bigger the brittleness is, the more suitable
.

y Elsevier B.V. on behalf of KeAi Co
the reservoirs are for fracturing modification.
The brittleness index (BI), which is used to describe the brit-

tleness of reservoirs, is typically composed of Young's modulus,
Lam�e constants, shear modulus, Poisson's ratio, density, and their
derived parameters. Rickman et al. (2008) studied the correlation
between brittleness and Young's modulus, Poisson's ratio of res-
ervoirs, proposing a BI represented by the normalized average of
the last two parameters. Goodway et al. (2010) argued that reser-
voirs with higher brittleness correspond to lower Lam�e constants
and moderate shear modulus. They noted that an increase in
Young's modulus and a decrease in Poisson's ratio are equivalent to
an increase in shear modulus, and proposed using the shear
modulus to directly characterize the BI. Guo et al. (2012) built upon
these studies, combining Lam�e constants and shear modulus to
represent the BI. However, due to the unclear physical meaning of
these two parameters, they replaced the parameters with Poisson's
ratio, proposing a BI that only includes Poisson's ratio. Limited by
the range of Poisson's ratio, the BI may not effectively identify
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Parameters of the Ostrander shale model (Ostrander, 1984).

Lithology P-wave velocity, m/s S-wave velocity, m/s Density, g/cm3 Brittleness index Young's modulus, �107

Sand 2438 1625 2.14 0.98 1.25
Shale 3048 1244 2.40 0.47 1.04
Sand 2438 1625 2.14 0.98 1.25

Fig. 1. P-wave reflection coefficients calculated using different AVO forward equations: (a) sandstone-shale interface; (b) shale-sandstone interface.

Fig. 2. The flowchart of the proposed intelligent seismic AVO inversion method.

Y.-H. Sun, H.-L. Dong, G. Chen et al. Petroleum Science 22 (2025) 627e640
reservoir brittleness in some cases, resulting in certain limitations
in its application. For solving the challenge, Zhang et al. (2015)
proposed representing a BI as the ratio of Young's modulus to
Poisson's ratio. However, without normalizing the parameters, the
BI usually has a relatively large value, making it inconvenient for
comparison. To address this issue, Chen et al. (2014) put forward a
BI specific to shale reservoirs, represented as the ratio of Young's
modulus to Lam�e constants. Compared to other BIs, the BI exhibits
higher accuracy in identifying shale reservoir brittleness and we
primarily focus on inverting the BI here.

The brittleness index can typically be obtained through indirect
and direct methods. The former first utilizes seismic and well-log
data to obtain Young's modulus, Lam�e constants, Poisson's ratio,
and other parameters via seismic inversionmethods. Subsequently,
the BI is calculated using established formulas. Altamar andMarfurt
(2015), andWang et al. (2022) obtained elastic impedances through
inversion, then calculated the first and second Lam�e parameters,
and characterized reservoir brittleness using cross plots of these
parameters and density. Li et al. (2014), Liu and Sun (2015) and Han
et al. (2018) both employed AVO inversion methods to obtain the
former parameters for shale reservoirs, and then determined the
spatial distribution characteristics of reservoir brittleness in their
target work areas based on their respective evaluation criteria. Fang
et al. (2023) identified the potential sensitive parameters of the
chosen BI, then determined the weight coefficients of different
sensitive parameters based on the analytic hierarchy process, and
finally calculated the BI with high accuracy based on inverted
elastic parameters. Zhang et al. (2024) proposed a multi-mineral
component equivalent model suitable for complex lithologies,
which can accurately calculate the ratio of P-wave velocity to S-
wave velocity. Based on this, they inverted Poisson's ratio, Young's
modulus and calculated a BI. Wang (2024) obtained impedance
information through post-stack inversion and then realized brit-
tleness identification based on the relationship between imped-
ance and the chosen BI. The direct method involves first deriving an
AVO forward approximation equation that directly characterizes
reflection coefficients with the BI. Then, seismic AVO inversion
methods are applied to directly obtain the BI. Zhang et al. (2017)
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and Li et al. (2022) independently employed the approach to
directly obtain the chosen BI for their target regions. Sun et al.
(2021) inverted for a BI based on an extended elastic impedance
inversionmethod. Trial calculations in field work areas showed that
the inverted BI agreed well with well-log data. Qian et al. (2020)
derived a new BI equation based on the Voigt-Reuss-Hill average
and obtained the BI directly through inversion. Comparatively, the
direct method avoids the cumulative errors that may arise from
indirect calculations, resulting in the BI with higher accuracy than
the indirect one.

Based on different inversion mechanisms, seismic AVO inver-
sion methods can be categorized into traditional and intelligent
methods. Traditional methods rely on the convolution model the-
ory, using the error between synthetic and observed seismic data as
the objective function (Huang et al., 2022, 2023; Wang et al., 2022).
The relationship between the objective function value and the
preset iteration termination threshold controls the updating of



Fig. 3. The structure of the TransU-net model for brittleness index AVO inversion.
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inverted parameters (Wang et al., 2021; Yu et al., 2024). Yin et al.
(2015) proposed a model-constrained basis pursuit AVO inversion
method that stably obtains Young's modulus and Poisson's ratio,
enabling identification of reservoir brittleness. Ge et al. (2022)
derived an AVO forward equation characterizing reflection co-
efficients in terms of Young's modulus, Poisson's ratio, and weak
anisotropy parameters based on VTI media. They further improved
the accuracy of inverted BI by combining the equation with
Bayesian inversion theory. While these traditional methods are
efficient, the accuracy of their inverted parameters often depends
on the accuracy of low-frequency parameters, because observed
seismic data often lack low-frequency information (Huang et al.,
2024). Low-frequency parameters are usually interpolated from
low-pass-filtered well-log data under the constraint of horizon
information (Wang et al., 2020; Sun and Liu, 2022). However, in
most field work areas, well-log data are limited and their distri-
bution is uneven, resulting in inaccurate low-frequency parame-
ters, which affects the accuracy of parameters inverted by
traditional methods. In contrast, the accuracy of parameters
inverted by intelligent methods does not rely on low-frequency
parameters. These methods are based on neural network technol-
ogy, where the error between the network output and sample
parameters serves as the objective function (Sun et al., 2024; Sun
and Liu, 2021). The relationship between the objective function
value and the preset threshold controls the updating of the neural
network model, which is then used to achieve parameter inversion.
Chen et al. (2023) defined the BI as the ratio of Young's modulus to
Poisson's ratio and derived an AVO forward approximation equa-
tion characterizing the reflection coefficient in terms of the BI.
Then, they combined the equation with a gated recurrent neural
network based on spatial-temporal attention mechanisms to ach-
ieve stable BI inversion. Intelligent methods are suitable for
handling large-sample problems and require many representative
training samples, which are typically generated from well-log data
and seismic data near to wells. However, as mentioned earlier, the
limited of well-log data often lead to insufficient training samples,
making seismic AVO inversion being small-sample problems and
affecting the accuracy of parameters inverted by intelligent
methods. To address this issue, scholars studied intelligent inver-
sion methods from the perspectives of improving neural network
models and optimizing objective functions, achieving promising
results. Wang et al. (2021a, 2021b) optimized neural network
629
models, proposing intelligent AVO inversion methods based on
improved residual networks and improved conditional generative
adversarial networks, respectively, which improved the accuracy of
inverted parameters. Sun et al. (2021) and Liu et al. (2022) com-
bined the convolution model theory in geophysics to improve the
form of the objective function, proposing intelligentmethods based
on multi-objective functions and spatially varying objective func-
tions, respectively, which obtain high-accuracy parameters in
small-sample cases.

To enhance the accuracy of inverted brittleness index and sup-
port engineering sweet spot identification and fracturing
improvement, we propose an intelligent seismic AVO inversion
method specifically tailored for brittleness index in shale oil res-
ervoirs. Firstly, we derive an AVO forward approximation equation
that directly characterizes the BI in terms of P-wave reflection co-
efficients. To reconcile the discrepancy between seismic AVO
inversion, which is typically characterized as a small sample
problem, and intelligent methods that are suited to addressing
large sample problems, we construct a TransU-netmodel capable of
extracting both local and global features. The model is designed to
fit the strongly nonlinear mapping relationship between seismic
data and the chosen BI. Then, we generate low-frequency param-
eters and training samples based on well-log data and seismic data
near to wells, and then augment the latter to increase its data
volume. Subsequently, we establish a combined objective function
by combining the L2 norm and cross-correlation function, utilizing
both training samples and low-frequency parameters to optimize
the TransU-net model. The step utilizes both well-log data and
seismic data information, which can alleviate the small sample
problem of seismic AVO inversion to some extent. Finally, the
optimized TransU-net model is employed to achieve direct BI
inversion.We applied the proposedmethod tomodel data and field
data from the X work area for testing and analysis, yielding several
meaningful conclusions.
2. Equation derivation

2.1. Derivation of the brittleness index-based AVO forward
approximation equation

The convolution model theory is the core of AVO forward
modeling and inversion methods. Without considering the impact



Fig. 4. The flowchart of TransU-net model training in the proposed method.

Fig. 5. Real parameters of the partial Marmousi 2 model: (a) brittleness index; (b)
Young's modulus; (c) density.

Y.-H. Sun, H.-L. Dong, G. Chen et al. Petroleum Science 22 (2025) 627e640
of noise, its mathematical expression is as follows:

D¼W*R (1)

where, D is seismic data; W represents the seismic wavelet; R
denotes reflection coefficients, which are typically calculated from
elastic parameters using AVO forward modeling equations. Zong
et al. (2012) derived the YPD approximation equation that char-
acterizes P-wave reflection coefficients in terms of Young's
modulus and Poisson's ratio. The expression for the equation is

R1PP ¼A
DE

E
þ B1

Ds
s

þ C
Dr
r

A¼1
4
sec2 q� 2k sin2 q

B¼1
4
sec2 q

ð2k� 3Þð2k� 1Þ2
kð4k� 3Þ þ 2 sin2 q

ð2k� 1Þk
4k� 3

C¼1
2
� 1
4
sec2 q (2)

where, R1PP represents the P-wave reflection coefficient; E, s, and r

denote Young's modulus, Poisson's ratio, and density, respectively;
D, and , mean the difference and average of parameters across the
interface, respectively; q is the incident angle; k demonstrates the
square of the ratio of P- and S-wave velocities. We adopt the BI
proposed by Chen et al. (2014) as the inversion parameter, and its
expression is as follows:

BI¼ E
l

(3)

where, l represents the Lam�e parameter. In isotropic media, the
relationship between the Lam�e parameter and Young's modulus
can be expressed as

l¼ E
s

ð1þ sÞð1� 2sÞ (4)

We assume that:
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t1 ¼
s

1þ s



Fig. 6. Ricker wavelet with a dominant frequency of 25 Hz.

Fig. 7. Noise-free angle-stacked seismic data from the partial Marmousi 2 model: (a)
13�; (b) 23�; (c) 33� .

Fig. 8. Low-frequency parameters of the partial Marmousi 2 model: (a) brittleness
index; (b) Young's modulus; (c) density.
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t2 ¼
1

1� 2s
(5)

and there is

DBI
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¼DE
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� Dl
l

¼ DE
E

� Dt1
t1

� Dt2
t2

(6)

where,

Dt1
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¼D s
1þs
s

1þs

¼ 2
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1þs2
� s1

1þs1
s2

1þs2
þ s1
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Due to the fact that:

s1 ¼s� Ds
2

s2 ¼sþ Ds
2

s¼ 1� 2k
2� 2k

(8)

we have



Fig. 9. Schematic diagram of a set of training samples.

Fig. 10. The objective function curve of the network model in the proposed method.

Fig. 11. Based on noise-free seismic data from the partial Marmousi 2 model, pa-
rameters inverted by the proposed method: (a) brittleness index, (b) Young's modulus,
and (c) density.
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By substituting Eq. (9) into Eq. (6), we obtain

Ds
s

¼ kð4k� 3Þ
6k2 � 8kþ 3

DBI
BI

(10)

And then, we substitute Eqs. (10) and (6) into Eq. (2), and obtain the
AVO forward approximation equation for the P-wave reflection
coefficients represented by the BI and other parameters. The
expression can be shown as

R2PP ¼A
DE

E
þ B2

DBI

BI
þ C

Dr
r

632
B2 ¼
1
4
sec2 q

ð2k� 3Þð2k� 1Þ2
6k2 � 8kþ 3

þ 2 sin2 q
ð2k� 1Þk2

6k2 � 8kþ 3
(11)

2.2. Analysis of the accuracy of the derived AVO forward
approximation equation

To verify the accuracy of the derived approximation equation,
we utilize the Ostrander's shale model (Ostrander, 1984), whose
parameters are outlined in Table 1, to calculate the P-wave reflec-
tion coefficients using the derived approximation equation, the
YPD approximation equation, and the exact Zoeppritz equation,
respectively. As shown in Fig. 1, for both the sandstone-shale and
shale-sandstone interfaces, when the incidence angle is less than
45�, the reflection coefficient curves calculated using the derived
equation are close to those obtained from the YPD equation and the
Zoeppritz equation, indicating its high accuracy and suitability for
direct inversion of the brittleness index.

3. Methods

The intelligent seismic AVO inversion method for the brittleness
index proposed mainly consists of four steps: TransU-net model
construction, data preprocessing, TransU-net model training, and
brittleness index inversion. The flowchart, which are shown in



Fig. 12. Based on noise-free seismic data from the partial Marmousi 2 model, pa-
rameters inverted by the intelligent method: (a) brittleness index, (b) Young's
modulus, and (c) density.

Fig. 13. Based on noise-free seismic data from the partial Marmousi 2 model, pa-
rameters inverted by the traditional method: (a) brittleness index, (b) Young's
modulus, and (c) density.
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Fig. 2, is described in detail below.
3.1. Construction of the TransU-net model

Here, we construct a TransU-net model tailored for addressing
small-sample problems, as illustrated in Fig. 3. Relatively speaking,
Transformer can capture global context information through its
self-attention mechanism, while convolutional neural network
(CNN) excels at extracting local features. TransU-net combines the
advantages of both Transformer and CNN, enabling it to capture
long-range dependencies in data while preserving local detailed
features, thereby enhancing the comprehensiveness and accuracy
of feature extraction. Furthermore, the self-attentionmechanism of
Transformer allows TransU-net to consider interactions between all
positions in the data during feature extraction. This global
perspective facilitates a better understanding of the information
contained within the data. Additionally, TransU-net adopts the
encoder-decoder structure of U-net and uses skip connections to
fuse feature maps from the encoder and decoder, enabling feature
extraction at different scales and effectively combining these fea-
tures through fusion operations, thereby enhancing the richness
and robustness of feature extraction. At the same time, the self-
attention mechanism of Transformer also promotes interaction
and fusion between features, further improving the effectiveness of
feature extraction. As shown in Fig. 3, the constructed TransU-net
model comprises a CNN section for extracting local information, a
633
Transformer section for extracting global information, and an up-
sampling section for restoring data features. The CNN section
contains three feature maps, connected by convolution operations
with a kernel size of 3� 3. The last feature map is dimensionally
adjusted to form local hidden features, which are then input into
the Transformer section after maximum pooling. The Transformer
section comprises 12 Transformer layers, consisting of multi-layer
perceptions. The last Transformer layer generates global hidden
features, which are dimensionally adjusted and input into the up-
sampling section. The up-sampling section includes eight feature
maps, connected by convolution operations and up-sample oper-
ations. After up-sampling, each feature map is concatenated with
the corresponding feature map from the CNN section for feature
fusion. These concatenated features are then processed by a
convolution operation with a kernel size of 3� 3 to generate the
feature map for the next layer. In the TransU-net model, we use the
ReLU activation function and set the learning rate to 0.001.
3.2. Data preprocessing

The proposedmethod combines the convolutional model theory
with neural network technology, utilizing both low-frequency pa-
rameters and training samples. Therefore, it is necessary to pre-
process seismic data and well-log data to obtain the two data.
Firstly, we calculate the brittleness index and Young's modulus
using well-log data, and then interpolate the calculated data and



Fig. 14. Based on noise-free seismic data at CDP 2001 from the partial Marmousi 2 model, (a) real, low-frequency, inverted parameters, and (b) the absolute errors between real and
inverted parameters.

Table 2
The MSEs between the real and inverted parameters and cost time of different methods.

Method Brittleness index Young's modulus, �107 Density, �10�4 Cost time, s

Proposed 0.0016 1.52 4.28 581
Intelligent 0.0065 4.93 13 693
Traditional 0.0091 5.57 19 432
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density after low-pass filtering to obtain low-frequency parameters
under the constraint of horizon information. Subsequently, we
create training samples based on the calculated data, density, and
seismic data near to wells, with the former serving as the sample
output (sample parameters) and the latter as the sample input
(sample seismic data). Due to the limited availability of well-log
data in field work areas, we enhance the number of training sam-
ples through techniques such as changing the low-frequency in-
formation of calculated data and density according geological
features, distorting the high-frequency information of calculated
data and density based on experience, adding random numbers on
calculated data and density.

Furthermore, the AVO inversion proposed is conducted based on
pre-stack angle gathers, which often involve a large volume and
significantly impact computational efficiency. In field inversion
tasks, we typically stack pre-stack angle gathers into different
angle-stacked seismic data based on distinct angle ranges. This
approach aims to enhance efficiency while preserving as much
information as possible from the pre-stack seismic data across
various angle ranges. When selecting the angle ranges for stacking,
factors such as themaximum andminimum incident angles, as well
as the signal-to-noise ratio of seismic data, are usually considered.
By comprehensively evaluating the quality and angle range of both
the model and the field seismic data presented in this context, we
aim to achieve an optimal balance between computational effi-
ciency and data fidelity. The pre-stack seismic data from 3� to 45�

are stacked into 13�, 23�, and 33� angle-stacked seismic data ac-
cording to the angle ranges of 3�e23�, 13�e33�, and 23�e43�,
respectively, which are then used as the input data for inversion.
Finally, statistical seismic wavelets are extracted from the seismic
data for subsequent inversion.
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3.3. Training of the TransU-net model

As shown in Fig. 4, the sample seismic data DSam are first input
into the constructed TransU-net model to obtain the output pa-
rameters MOut. Subsequently, the low-frequency components of
the output parameters are replaced with low-frequency parame-
ters MLow to generate prediction parameters MPre. Based on the
predicted parameters, P-wave reflection coefficients are calculated
using Eq. (11) and then are convolved with the extracted seismic
wavelets to synthesize seismic data DSyn, thus creating a closed
loop. Within each closed loop, we calculate the error between the
predicted and the sample parameters MSam, as well as the error
between the synthetic and the sample seismic data. These errors
are then combined to form the objective function, which is
expressed as:

J¼m , f1ðMPre;MSamÞþ ð1�mÞ,f2
�
DSyn;DSam

�
(12)

where, f1ð ,Þ represents the L2 norm, which is used to calculate the
error between parameters; f2ð ,Þ stands for the cross-correlation
function, employed to measure the error between seismic data.
The expression of f2ð ,Þ is:

f2
�
DSyn;DSam

�¼

0
B@1� DSyn,DSamffiffiffiffiffiffiffiffiffiffi

D2
Syn

q
,

ffiffiffiffiffiffiffiffiffiffiffi
D2
Sam

q
1
CA (13)

It enhances the noise resistance of the objective function and
effectively prevents it from falling into local extrema when dealing
with data exhibiting waveform characteristics; m, which is deter-
mined through testing, denotes the weight coefficient of the first



Fig. 15. Noisy angle-stacked seismic data from the partial Marmousi 2 model: (a) 13�;
(b) 23�; (c) 33� .

Fig. 16. Based on noisy seismic data from the partial Marmousi 2 model, parameters
inverted by the proposed method: (a) brittleness index, (b) Young's modulus, and (c)
density.
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term on the right-hand side of Eq. (12), indicating the proportion of
the objective function influenced by training samples.

We sequentially input the sample seismic data into the TransU-
net model. In each closed loop, the objective function is calculated
based on Eq. (13), and the hyperparameters of the model are iter-
atively updated using the backpropagation algorithm until the
objective function converges, thus completing the training of the
TransU-net model.

3.4. Brittleness index inversion

The angle-stacked seismic data from the target area are input
into the trained TransU-net model, and low-frequency components
of the output parameters are replaced with low-frequency pa-
rameters to obtain the inverted brittleness index, Young's modulus,
and density.

4. Model data tests

We conduct preliminary tests using the partial Marmousi 2
model to analyze the feasibility, advancement, and noise resistance
of the proposed method. The partial Marmousi 2 model comprises
4001 CDPs (common-depth points), with each CDP containing 1600
samples at a sampling interval of 1 ms. The real brittleness index,
Young's modulus, and density of the partial model are presented in
Fig. 5. Using these parameters, we calculate P-wave reflection co-
efficients based on Eq. (11) and then convolve themwith the Ricker
635
wavelet with a dominant frequency of 25 Hz (shown in Fig. 6) to
synthesize pre-stack seismic data. Subsequently, the pre-stack data
are stacked according to different angle ranges to obtain 13�, 23�,
and 33� angle-stacked seismic data, as displayed in Fig. 7. Low-
frequency parameters (shown in Fig. 8) and training samples are
created using the parameters from CDPs 501, 1501, 2501, and 3501.
After sample augmentation, a total of 100 sets of training samples
are generated, with one set shown in Fig. 9.
4.1. Analysis of feasibility and advancement

We carry out tests using the proposed method, an intelligent
method (Liu et al., 2022), and a traditional method (Shi et al., 2020).
When processing the partial model data with the proposed
method, we input the training samples and low-frequency pa-
rameters into the TransU-net model and follow the training process
outlined in Fig. 4. Through testing, we determine the value of m in
the objective function is 0.62. After 120 iteration epochs, the
objective function converges, as shown in Fig. 10. During the
training process, we set aside a validation set to evaluate the per-
formance of the TransU-net model and conducted cross-validation
to prevent the model from overfitting. Here, we present the model
that exhibited the best training performance. The angle-stacked
seismic data shown in Fig. 5 are input into the trained TransU-net
model to obtain the parameters presented in Fig. 11. As can be
seen from the figures, the parameters inverted by the proposed



Fig. 17. Based on noisy seismic data at CDP 2001 from the partial Marmousi 2 model, (a) real, low-frequency, inverted parameters, and (b) the absolute errors between real and
inverted parameters.

Fig. 18. Angle-stacked seismic data of the field data in the X work area: (a) 13� , (b) 23� ,
and (c) 33� .

Fig. 19. Base-map of the field data in the X work area.
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method tend to align with the structural patterns of the real pa-
rameters, indicating its good feasibility.

The intelligent method uses Eq. (11) as the forward modeling
equation. After testing, the parameters of the network model in the
method have been optimized, and the inverted parameters are
shown in Fig. 12. The traditional method utilizes the low-frequency
parameters displayed in Fig. 8, and its inverted parameters are
presented in Fig. 13. We extract the real parameters, low-frequency
parameters, and inverted parameters of the 2001th CDP and
display them in Fig. 14(a). Fig. 14(b) shows the absolute values of
the errors between the real and the inverted parameters. It can be
observed that, compared to those of the intelligent and traditional
methods, the curves of the parameters inverted by the proposed
method are closer to those of the real parameters, with smaller
absolute values of the corresponding errors.

To quantitatively analyze the accuracy of the parameters
inverted by different methods, we calculate the mean squared er-
rors (MSEs) between the real and the inverted parameters, and
then present them in Table 2. Smaller MSEs indicate higher accu-
racy of the inverted parameters. As can be seen from the table, the
MSEs corresponding to the parameters inverted by the proposed
method are smaller than those of the intelligent and traditional



Fig. 20. Statistical seismic wavelet extracted from the field seismic data.

Fig. 21. Low-frequency parameters of the field data: (a) brittleness index, (b) Young's
modulus, and (c) density.

Fig. 22. Based on the field seismic data, parameters inverted by the proposed method:
(a) brittleness index, (b) Young's modulus, and (c) density.
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methods, indicating that the proposed method achieves relatively
higher accuracy in inverted parameters.

Furthermore, as can be observed from Fig. 11, the inverted pa-
rameters obtained using the proposed method exhibit good lateral
continuity. Generally, intelligent methods derive higher accuracy
and resolution in inverted parameters for well-adjacent traces but
lower accuracy and poorer lateral continuity for inter-well inverted
parameters. On the other hand, traditional methods typically pro-
vide better overall lateral continuity in inverted parameters. It is
because intelligent methods primarily utilize training samples
created from broadband well-log data, with the objective function
being the error between sample and output parameters. The kind of
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method is not fully leveraging seismic data with good spatial con-
tinuity characteristics. Conversely, traditional methods mainly
utilize seismic data information, with the objective function being
the error between synthetic and field seismic data. The proposed
method combines the objective functions of both intelligent and
traditional methods, using both the error between parameters and
the error between seismic data. It not only utilizes the broadband
information from well-log data but also leverages the spatial con-
tinuity information from seismic data. Therefore, the parameters
inverted by the method exhibit both high accuracy and good lateral
continuity.

Lastly, we record the time required for different methods to



Fig. 23. Based on the field seismic data, parameters inverted by the intelligent
method: (a) brittleness index, (b) Young's modulus, and (c) density.

Fig. 24. Based on the field seismic data, parameters inverted by the traditional
method: (a) brittleness index, (b) Young's modulus, and (c) density.
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invert the parameters shown in Figs. 11e13, and present them in
the rightmost column of Table 2. The traditional method requires
the least amount of time, while the intelligent method requires the
most. Although the proposed method costs more time than the
traditional method, it is still within an acceptable range. Consid-
ering the accuracy, resolution, lateral continuity of inverted pa-
rameters, and efficiency comprehensively, the proposed method
demonstrates advanced performance.

4.2. Analysis of noise resistance ability

We add random noise to the aforementioned synthetic pre-
stack seismic data and then stack them to form angle-stacked
seismic data with a signal-to-noise ratio of 2, as shown in Fig. 15.
We directly input the noisy seismic data into the trained TransU-net
model to obtain the inverted parameters as depicted in Fig. 16. It
can be observed from the figures that the parameters inverted by
the proposed method based on noisy seismic data still exhibit good
structural consistency with the real parameters and have relatively
small perturbations.

For a clear comparative analysis, we also extract the real and the
inverted parameters of CDP 2001 and calculate the absolute values
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of their errors, as shown in Fig. 17(a) and (b), respectively. The
curves corresponding to the real and the inverted parameters align
well, and the absolute error curves are close to zero. Additionally,
we calculate the MSEs between the two parameters, which are
0.0017 (brittleness index), 1.62 � 107 (Young's modulus), and
4.30 � 10�4 (density). Compared to inverted parameters based on
noise-free seismic data, the MSEs of those based on noisy seismic
data increase but remain within an acceptable range, indicating
that the proposed method possesses good noise resistance
capabilities.
5. Field data applications

To further validate the practicality and advancement of the
proposed method, we apply it to field data from the shale oil res-
ervoirs in the X work area. The angle-stacked seismic data of the
target area, as shown in Fig. 18, comprise 900 inline and 1000 Xline,
with a target layer depth ranging from 1150 to 1450 ms and a
sampling interval of 1 ms. The base-map of the field data, presented
in Fig. 19, indicates that the target area includes 6 wells, with blue
wells designated as training wells and red wells as validationwells.



Fig. 25. Based on the field seismic data, (a) well-log data, low-frequency, and inverted parameters; (b) the absolute errors between well-log data and inverted parameters.

Table 3
The MSEs between the real and inverted parameters and cost time of different methods.

Method Brittleness index, �10�4 Young's modulus, �107 Density, �10�4

Proposed 6.37 6.43 8.20
Intelligent 7.24 7.48 9.00
Traditional 9.95 10.48 9.62
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Fig. 20 displays the statistical seismic wavelet extracted from the
field seismic data. Based on the well-log data from the four blue
wells, we first calculate the brittleness index and Young's modulus.
Then, we apply a 0-0-3-5 Hz low-pass filter to the calculated data
and density to obtain the low-frequency brittleness index, Young's
modulus, and density. Subsequently, under the constraint of hori-
zon information, we use the Kriging interpolation method to create
the low-frequency parameters, which are depicted in Fig. 21.
Following the previously mentioned data preprocessing methods,
we create and augment training samples (totaling 100 sets).

The low-frequency parameters and training samples are then
fed into the constructed TransU-net model. Testing reveals an m of
0.71 in the objective function. After 170 iteration epochs, the
objective function converges, completing the training of the
TransU-net model. During the training process, we set aside a
validation set to evaluate the performance of the TransU-netmodel,
and to avoid it overfitting. By inputting the angle-stacked seismic
data shown in Fig. 18 into the trained TransU-net model, we invert
the brittleness index, Young's modulus, and density, as illustrated
in Fig. 22. It can be observed that the inverted parameters exhibit
structural similarity to the angle-stacked seismic data.

Additionally, we compare the proposed method with the intel-
ligent method (Liu et al., 2022) and the traditional method (Shi
et al., 2020) to analyze the advancement of our method. The
intelligent method uses the same training samples as the proposed
method, and its model is optimized through testing. The traditional
method employs the same low-frequency parameters as our
method. The parameters inverted by the twomethods are shown in
Figs. 23 and 24, respectively, both exhibiting good structural simi-
larity to the angle-stacked seismic data.

To clearly assess the accuracy of the parameters inverted by
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different methods, we extract the well-log data, low-frequency
parameters, and inverted parameters from Well 1 and present
them in Fig. 25(a). Fig. 25(b) displays the absolute values of the
errors between the inverted parameters and the well-log data.
Compared to those of the intelligent and the traditional methods,
the parameter inverted by the proposed method are generally
closer to the well-log data curves, with relatively smaller absolute
errors. For a quantitative comparative analysis, we calculate the
MSEs between the inverted parameters and the well-log data and
show the values in Table 3. The MSEs corresponding to the pa-
rameters inverted by the proposed method are lower than those of
the intelligent and the traditional methods, indicating relatively
higher accuracy of the parameters inverted by the proposed
method.
6. Conclusions

To obtain brittleness index with high accuracy, which are vital
for identifying engineering sweet spots and fracturing operations in
shale oil reservoirs, we first derive an AVO forward approximation
equation that directly characterizes P-wave reflection coefficients
with the BI, Young's modulus, and density. Subsequently, an intel-
ligent seismic AVO inversion method for the BI is proposed by
combining the TransU-net model with the derived equation.
Leveraging the ability of the TransU-net to extract both local and
global information, we construct a combined objective function
using the L2 norm and the cross-correlation function. By simulta-
neously utilizing low-frequency parameters and training samples,
the proposed method effectively addresses the challenges of small-
sample problem in AVO inversion. Partial Marmousi 2 model tests
demonstrate the proposed method can stably invert the BI with
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high accuracy. Application to field data from the X work area
further verifies its practicality and advancement, with inverted
parameters exhibiting higher accuracy compared to other methods.
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