Petroleum Science 22 (2025) 909-924

Contents lists available at ScienceDirect

## **Petroleum Science**

journal homepage: www.keaipublishing.com/en/journals/petroleum-science

## **Original Paper**

# Feasibility study of a process for the reduction of sulfur oxides in flue gas of fluid catalytic cracking unit using the riser reactor



Petroleum Science

Fa-Lu Dang <sup>a</sup>, Gang Wang <sup>a, \*</sup>, Jing-Cun Lian <sup>a</sup>, Yu Yang <sup>a, b</sup>, Mei-Jia Liu <sup>a</sup>

<sup>a</sup> State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and and Environment, China University of Petroleum, Beijing, 102249, China
<sup>b</sup> State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China

#### ARTICLE INFO

Article history: Received 28 March 2024 Received in revised form 18 September 2024 Accepted 25 September 2024 Available online 27 September 2024

Edited by Min Li

Keywords: Sulfur oxides New catalytic cracking process Thermodynamic analysis Kinetic analysis Sulfur recovery

## 1. Introduction

Fluid catalytic cracking (FCC) is the primary process used to refine heavy and crude oils and produce light olefins in the petroleum industry (Corma et al., 2017; Alotaibi et al., 2018; Xu et al., 2021; Oloruntoba et al., 2022; Stratiev et al., 2023). In the FCC reaction-regeneration process, sulfur in the feedstock partially enters the coke and is deposited on the catalyst in the reactor, subsequently the coke on the catalyst is burned in the regenerator to generate SO<sub>x</sub>-containing flue gas, elemental sulfur in the FCC flue gas accounts for 5%–15% of the total sulfur in the feedstock (Hu, 2012). The  $SO_x$  concentration in the FCC regeneration flue gas reaches 0.015–0.3 v% (Li, 2017), and its SO<sub>x</sub> emissions reach 10–420 thousand tonnes/year, which is a significant contributor to sulfur oxide (SO<sub>x</sub>) emissions in refining industry (Chen and Xu, 2015; Gong, 2020; Luan et al., 2020). As the quality of FCC feedstocks decreases, the amount of  $SO_x$  in the flue gas increases (Cheng et al., 2009; Li and Yuan, 2014; Wu, 2021; Li et al., 2022). Efforts have been made to develop FCC flue gas desulfurization technology to efficiently remove SO<sub>x</sub> (Chen and Weng, 2005; Feng et al., 2016). Typical flue gas desulfurization technologies such as sodium

Corresponding author.
 E-mail address: wanggang@cup.edu.cn (G. Wang).

### ABSTRACT

In this work, a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking (FCC) riser reactor for  $SO_x$  treatment (FCC-DeSO<sub>x</sub>) is proposed. The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert  $SO_x$  into H<sub>2</sub>S. Subsequently, H<sub>2</sub>S, along with the cracked gas, is processed downstream to produce sulfur. Thermodynamic analysis of the key reduction reactions in the FCC-DeSO<sub>x</sub> process revealed that complete conversion of  $SO_x$  to H<sub>2</sub>S is feasible in the dry gas (hydrogen-rich) prelift zone, as well as the upper and lower zones of the riser, upon achieving thermodynamic equilibrium. Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent. Through process optimization, investigation of the minimum reaction time, and kinetic studies, the potential of this method for the complete reduction of  $SO_x$  was further confirmed.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

> hydroxide, calcium carbonate or amine absorption method, are based on acid-alkali absorption principles, but often overlook the potential resource utilization of  $SO_x$  (Chen et al., 2020; Li et al., 2020; Liu et al., 2020; Nie et al., 2020; Wang et al., 2020; Gong, 2022). By achieving emission reduction of industrial waste and effectively utilizing  $SO_x$  resources through process technology innovation, we can not only meet stringent Chinese  $SO_x$  emission standards (GB 31571-32015), but also generate significant economic benefits (Magnabosco, 2007; Zhao et al., 2022; Ge et al., 2023; Huang, 2023).

> The ultimate goal in resource utilization is to convert  $SO_x$  into sulfur (Zhou, 2020; Li, 2023), an easily storable compound that serves as a primary feedstock for various products. Every refinery requires a sulfur recovery unit to extract H<sub>2</sub>S from FCC cracked gas. Effectively converting SO<sub>x</sub> to H<sub>2</sub>S from FCC flue gas can enhance the feedstock supply for the sulfur unit and improve overall economic efficiency.

In response to the technical challenges faced in reducing  $SO_x$  emissions in FCC flue gas, numerous scholars have investigated the use of sulfur transfer agents (Polato et al., 2008; Baillie, 2019). These agents facilitate the sulfate formation during the regeneration of FCC catalysts, which are subsequently reduced to H<sub>2</sub>S by hydrocarbons in the FCC reactor. H<sub>2</sub>S can then be directed to the Claus unit to produce sulfur (Polato et al., 2005; Jiang et al., 2011; Feng et al., 2014; Gaudin et al., 2016; Jiang et al., 2016; Yi and Ma,

https://doi.org/10.1016/j.petsci.2024.09.021



<sup>1995-8226/© 2024</sup> The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2019). However, the sulfur transfer agent is alkaline and it reduces heavy oil conversion, so it is below 5 wt% of the FCC catalyst usage, which results in less than 80% SO<sub>x</sub> removal rate of FCC flue gas. Other scholars have explored various catalysts for SO<sub>x</sub> reduction in FCC flue gas, Al<sub>2</sub>O<sub>3</sub>-loaded transition metal sulfides, rare-earth oxides, and chalcocite-type catalysts, to reduce SO<sub>x</sub> to H<sub>2</sub>S and sulfur (Mirhoseini and Taghdiri, 2016; Zhang et al., 2016; Hou et al., 2017; Miao and Dutta, 2017; Xia et al., 2017; Ge et al., 2018; Mousavi et al., 2018). Nevertheless, these catalysts still face challenges such as poor resistance to oxygen and rapid deactivation, which hinder the development of desulfurization technology for oxygenated FCC flue gas.

To address these challenges and achieve efficient utilization of  $SO_x$  in FCC flue gas, we propose a novel process called FCC-DeSO<sub>x</sub>, which utilizes an FCC riser reactor. As illustrated in Fig. 1, the flue gas undergoes pretreatment, such as flue gas purification with activated carbon (Olson et al., 2000; Humeres et al., 2002; Bejarano et al., 2003; Zawadzki and Wisniewski, 2007), the key reactions of flue gas pretreatment are shown in Table 1, the process removes NO<sub>x</sub>, fine catalyst particulates, and oxygen, furthermore convert  $SO_3$  to  $SO_2$ , resulting in  $SO_x$ -rich gas ( $SO_2/SO_3$  molar ratio>100). By further utilizing the FCC riser reactor, along with a prelift of dry gas (rich in hydrogen), a high reaction temperature, and high concentrations of hydrogen or hydrocarbons, SO<sub>2</sub>-rich gas can be reduced to H<sub>2</sub>S. The resulting H<sub>2</sub>S is then directed to downstream processes to generate sulfur products, thereby achieving the goal of treating SO<sub>x</sub> waste gas using existing units and ensuring the recovery of sulfur from the sulfurous gas.

This paper investigates the limitations imposed by thermodynamic equilibrium on the reduction reactions between  $SO_2$  and  $SO_3$ with petroleum hydrocarbons, hydrogen, and catalysts during the FCC process. By comparing the thermodynamic equilibrium concentrations of various reactions, the equilibrium limitations in reducing  $SO_x$  to  $H_2S$  are determined, providing theoretical support for process development. Subsequently, a feasibility study is conducted, which includes process optimization, exploration of the shortest reaction time, and kinetic modeling using a small tubular reactor to simulate the catalytic cracking environment in the riser. The feedstock consists of a mixture of  $SO_2$  and  $N_2$ , with a low concentration of hydrogen ( $H_2$ ) serving as the reducing gas.

## 2. Computational and experimental

#### 2.1. Thermodynamic computational methods

The key to realizing the industrial application of FCC-DeSO<sub>x</sub>

technology is the complete conversion of SO<sub>x</sub> to H<sub>2</sub>S. Residual SO<sub>x</sub> and H<sub>2</sub>S can react to form sulfur in high-temperature transport pipelines, leading to clogged pipelines and plant shutdowns. Additionally, SO<sub>3</sub> can react with Al<sub>2</sub>O<sub>3</sub>, the main component of the catalyst, to form sulfate under the FCC reaction environment, which can affect the catalyst's properties. Therefore, it is necessary to study the thermodynamic equilibrium limits of the reduction reactions occurring between SO<sub>2</sub> and SO<sub>3</sub> with petroleum hydrocarbons, hydrogen, and catalysts during the FCC process. This study aimed to reduce the impact of the SO<sub>x</sub> reduction reaction on the properties of FCC products and catalysts and to provide theoretical support for process development.

The thermodynamic reaction network for the reduction of  $SO_x$ in the riser was calculated to obtain the free energy, equilibrium constant, equilibrium conversion, and thermodynamic equilibrium concentration variation rule with temperature for the reduction of  $SO_x$  to  $H_2S$  or  $S_2$  under FCC conditions for different reductants. Thermodynamic computational analysis was performed using HSC Chemistry software, which includes thermodynamic data for more than 20,000 substances. The calculations are based on the principle of Gibbs free energy minimization, and the product distributions are determined by minimizing the Gibbs free energy based on the reactions involved in the reaction system. The equations for the Gibbs free energy of the reaction  $(\Delta_r G_m)$  and the reaction equilibrium constant (*k*) derived from the HSC Chemistry software are shown as:

$$\Delta_{\rm r} G_{\rm m} = \sum \mu \Delta_{\rm r} G_{\rm f} \tag{1}$$

$$k = \exp\left(\frac{-\Delta r G m}{RT}\right) \tag{2}$$

Where  $\Delta_r G_f$  is the standard molar Gibbs free energy of generation at the reaction temperature, kJ/mol;  $\Delta_r G_m$  is the standard molar Gibbs free energy of reaction at the reaction temperature, kJ/mol, respectively;  $\mu$  is the reaction stoichiometry; k is the standard equilibrium constant of the chemical reaction; R is the gas constant, J/(mol·K); and *T* is the reaction temperature, K.

## 2.2. Experimental procedure and product analysis

## 2.2.1. Feedstock and catalyst

Four types of standard gases were used in the SO<sub>2</sub> reduction experiments, include H<sub>2</sub> (6.0 v% hydrogen), SO<sub>2</sub> (1.0 v% SO<sub>2</sub>), CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> (4.5 v% methane and 1.5 v% ethane), H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> (6.0 v% hydrogen, 4.5 v% methane and 1.5 v% ethane) standard gases



Fig. 1. Schematic diagram of the process of treating  $SO_x$  in FCC flue gas with a riser reactor.

| T-LI. | - |
|-------|---|
| Table |   |

Major removals and reactions of flue gas purification with activated carbon (Olson et al., 2000).

| Items                                               | Explanation                                                                                     |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Activated carbon adsorption                         |                                                                                                 |
| Solid particles adsorbed by carbon                  | Removal of fine catalyst particulates                                                           |
| $O_2(g) = 2O(ad)$                                   | Removal of O <sub>2</sub>                                                                       |
| $SO_2(g) + O(ad) + H_2O(ad) = H_2SO_4(ad)$          | Removal of O <sub>2</sub>                                                                       |
| $SO_3(g) + H_2O(ad) = H_2SO_4(ad)$                  | Conversion of SO <sub>3</sub> to H <sub>2</sub> SO <sub>4</sub>                                 |
| $H_2SO_4(ad) + 2NH_3(g) = (NH_4)_2SO_4(ad)$         | Conversion of H <sub>2</sub> SO <sub>4</sub> to (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |
| $NO(g) + O(ad) = NO_2(ad)$                          | Removal of NO and O <sub>2</sub>                                                                |
| $2NO_2(ad) + 2NH_3(g) = 2N_2(g) + 3H_2O(g) + O(ad)$ | Removal of NO <sub>2</sub>                                                                      |
| Activated carbon regeneration                       |                                                                                                 |
| $(NH_4)_2SO_4(ad) = SO_3(ad) + H_2O(g) + 2NH_3(g)$  | Degradation of $(NH_4)_2SO_4$ to $SO_3$                                                         |
| $NH_3(g)+3SO_3(ad)=SO_2(g)+N_2(g)+H_2O(g)$          | Reduction of SO <sub>3</sub> to SO <sub>2</sub>                                                 |

Table 3

Note: (ad) = adsorbed state, (g) = gas phase.

diluted with  $N_2$ . These standard gases were purchased from Beijing Huatong Precision Chemical Gases Company. The FCC heavy oil feedstock, FCC fresh catalyst and FCC equilibrium catalyst were obtained from Sinopec Yanshan Petrochemical Company. The detailed properties of the two FCC catalysts are shown in Table 2. The properties of heavy oil feedstock are shown in Table 3.

#### 2.2.2. Experimental procedure and product analysis

The aim of this study was to investigate the complete conversion of SO<sub>x</sub> to H<sub>2</sub>S in a riser reactor under the influence of a dry gas prelift. The prelift dry gas mainly contains H<sub>2</sub>, methane (CH<sub>4</sub>), and ethane (C<sub>2</sub>H<sub>6</sub>), which have relatively high H<sub>2</sub> contents. Therefore, low-concentration reducing gases (H<sub>2</sub> gas, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mix gas, and H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mix gas) were selected as typical reactants to verify the feasibility of completely reducing SO<sub>2</sub> in the riser.

As depicted in Fig. 2, a small tube reactor (STR) is employed to simulate reduction reactions in the riser reactor. A mass flow controller (MFC) is utilized to determine the gas flow. The gas enters from the upper part of the reactor, which has an inner diameter of 16 mm. The tube reactor is heated in three distinct zones, with the middle zone serving as the catalyst loading zone. After the gas is cooled in the condenser, a portion of the gas is analyzed online by a sulfide content tester, while another portion is vented.

The typical experimental procedure follows: the reducing gas (6 v% H<sub>2</sub>) is introduced into the reducing gas line, which is controlled by a gas mass flow meter. The SO<sub>2</sub> standard gas (1 v% SO<sub>2</sub>) is introduced into the SO<sub>2</sub> gas line, which is also controlled by a gas mass flow meter. Both lines are connected to the upper part of the small tube reactor. The reaction is terminated by turning off the two gas mass flow meters. The postreaction gases are then cooled by a condenser, an ion chromatograph is used to analyze the water solution in condenser, and a GC 5890 gas chromatograph is used to analyze some of the gases. Five consecutive measurements are

| Table | 2 |
|-------|---|
|       |   |

| The | properties | of | the | FCC | catalysts. |
|-----|------------|----|-----|-----|------------|
|-----|------------|----|-----|-----|------------|

| Property                                 | FCC fresh catalyst | FCC equilibrium catalyst |
|------------------------------------------|--------------------|--------------------------|
| Pore volume, cm <sup>3</sup> /g          | 0.32               | 0.28                     |
| Specific surface area, m <sup>2</sup> /g | 148                | 135                      |
| Micro-reactivity index                   | 77                 | 58                       |
| Chemical composition, wt%                |                    |                          |
| Al <sub>2</sub> O <sub>3</sub>           | 54.4               | 53.32                    |
| SiO <sub>2</sub>                         | 42.79              | 41.95                    |
| P <sub>2</sub> O <sub>5</sub>            | 2.24               | 2.20                     |
| MgO                                      | 0.22               | 0.22                     |
| ZnO                                      | 0.31               | 0.31                     |
| MnO                                      | 0.04               | 0.04                     |
| Fe <sub>2</sub> O <sub>3</sub>           | 0                  | 0.59                     |
| NiO                                      | 0                  | 0.98                     |
| V <sub>2</sub> O <sub>5</sub>            | 0                  | 0.39                     |

| ubic 5         |          |          |        |
|----------------|----------|----------|--------|
| The properties | of heavy | oil feed | stock. |

| Items                                         | Value  | Items                 | Value |
|-----------------------------------------------|--------|-----------------------|-------|
| Feedstock density (20 °C), g·cm <sup>-3</sup> | 0.8986 | Aromatics             | 18.9  |
| Residual carbon value, wt%                    | 3.01   | Resins                | 12.4  |
| Elemental content, wt%                        |        | Asphaltenes           | <0.1  |
| С                                             | 86.12  | Boiling range, °C     |       |
| Н                                             | 13.15  | Initial boiling point | 302   |
| S                                             | 0.35   | 10 wt%                | 420   |
| N                                             | 0.36   | 30 wt%                | 475   |
| Hydrocarbon group composition, wt%            |        | 50 wt%                | 515   |
| Saturates                                     | 68.7   | 70 wt%                | 543   |

averaged with an error of less than 2%.

. .

The definitions of  $SO_x$  conversion and  $H_2S$  selectivity in the experimental and thermodynamic computations are shown as follows:

$$SO_{x} Conversion = \left(1 - \frac{M_{unconverted SOx}}{M_{SOX in feed}}\right) \times 100\%$$
(3)

$$H_2S \text{ Selectivity} = \frac{M_{\text{sulfur in H}_2S \text{ product}}}{M_{\text{sulfur in SO}_x\text{feed}}} \times 100\%$$
(4)

In order to examine the heavy oil FCC performance with FCC equilibrium catalyst before and after  $SO_2$  reduction in detail. The heavy oil FCC experiments were carried out in a fixed fluidized bed reactor, the schematic diagram is shown in Fig. 3, and the experimental conditions were: Temperature was 550 °C, catalyst/oil mass ratio was 12, and weight hourly space velocity (WHSV) was 10 h<sup>-1</sup>. Additional details of the operation of this device are given in the literature (Yang et al., 2023).

#### 2.2.3. Product analysis

The SO<sub>2</sub> content in the exit gas samples at each experimental point was analyzed. While the simulation experiment aims to determine whether SO<sub>2</sub> is completely converted to H<sub>2</sub>S, only the H<sub>2</sub>S content in the exit gas samples is analyzed when the SO<sub>2</sub> conversion reaches 100%. A GC 5890 gas chromatograph with a flame photometric detector (FPD) was used to analyze various sulfide fractions (including H<sub>2</sub>S, sulfur, and SO<sub>2</sub>) in the exit gas samples from the small tube reactor. The chromatographic data were analyzed using an N(VI) 3000 chromatographic workstation. For the experimental points with 100 percent H<sub>2</sub>S yield, the sulfate and sulfite of the water solution in condenser was analyzed using an ion chromatograph (ICS-1100, Thermo Dionex), the results show that these ions were not exist in the water, suggesting that SO<sub>2</sub> is completely converted to H<sub>2</sub>S.



Fig. 2. Schematic diagram of experimental SO<sub>2</sub> reduction in a small tubular reactor.



Fig. 3. Schematic diagram of fixed fluidized bed experimental reactor.

The FCC gas product was defined as cracked gas (H<sub>2</sub> and C<sub>1</sub>-C<sub>4</sub> hydrocarbons). The hydrocarbon percentage of cracked gas was analyzed by Agilent 6890 chromatography, the sulfur content of cracked gas was obtained from GC 5890 gas chromatograph. The liquid product was classified into gasoline (C<sub>5</sub>-200 °C), diesel (200–350 °C) and slurry oil (Initial boiling point >350 °C), and a small distillation setup was used to cut out gasoline, diesel and slurry oil, more details of this device are given in the previous literature (Wang, 2006). The sulfur content of gasoline, diesel and slurry oil were analyzed by an RPP200S UV Fluorescence Sulfur Analyser. The hydrocarbon composition of the gasoline was obtained by another Agilent 7890 chromatography. The coke and sulfur content on the catalyst was determined by an infrared carbon and sulfur analyzer.

1D automatic micro inverse activity tester from Sinopec Research Institute of Petroleum Processing. The structural groups on the FCC equilibrium catalyst were detected using a Nicolet Magma-IR 560 ESP FTIR spectrometer manufactured in the USA. The Bruker D8 Advance equipment with Cu K $\alpha$  radiation was used to test X-ray diffraction (XRD) patterns of catalysts. The specific surface area and pore volume of the catalysts were measured using a Quadrasorb-SI multifunctional adsorber manufactured in the USA, using high purity nitrogen as the adsorbent. The BET equation was used to determine the specific surface area, and the t-plot method was used to calculate the pore volume.

The micro-activity of the catalyst was determined using a WFS-

## 3. Results and discussion

## 3.1. Reaction system analysis for the reduction of $SO_x$ in riser

The FCC-DeSO<sub>x</sub> process revolves around the solid reduction environment in the riser and the action of the prelift dry gas (H<sub>2</sub>rich). Through process innovation, the efficient recovery and conversion of sulfur resources in FCC flue gas can be achieved, significantly increasing the treatment capacity of FCC flue gas. The reduction process of SO<sub>x</sub> is divided into three reaction zones based on the relative concentration of reactants, temperature, and residence time in different zones of the riser. Please refer to Table 4 for the detailed conditions.

A schematic representation of a typical process flow for the reduction of  $SO_x$  in a riser reactor is presented in Fig. 4.  $SO_x$  gas, combined with prelift dry gas, enters the prelift reaction zone (reaction zone 1). In this zone, the mixed gas is brought into contact with the high-temperature FCC catalyst to facilitate a reduction reaction, resulting in the reduction of  $SO_x$ . Subsequently, the mixed gas, along with the high-temperature catalyst, move upward into the riser zone. In the lower zone (reaction zone 2) of the riser, petroleum hydrocarbons, mixed gas, and catalyst come into contact, leading to the formation of a mixture of materials. During this contact, the  $SO_x$  is primarily reduced through the FCC liquid phase products. The resulting mixture then enters the upper zone (reaction zone 3) of the riser, where further reduction of  $SO_x$  occurs through the FCC cracked gas. After undergoing reduction in these three reaction zones, the  $SO_x$  is fully reduced to H<sub>2</sub>S.

The H<sub>2</sub>S-rich FCC product is then guided through a fractional distillation tower, an absorption stabilization unit, and a dry gas refining device. These components collectively facilitate the production of H<sub>2</sub>S with high purity and increase the availability of raw materials for the sulfur unit. Additionally, it is possible to feed SO<sub>x</sub> into different zones within the riser reactor, ensuring complete conversion to H<sub>2</sub>S after undergoing reduction reactions in reaction zones 1 to 3. If SO<sub>x</sub> is only fed into reaction zone 3, the residence time is minimized, thereby reducing its impact on the FCC product.

Throughout the  $SO_x$  reduction process, the elemental sulfur in SO<sub>x</sub> may be reduced directly by hydrocarbons into H<sub>2</sub>S or sulfur, and SO<sub>x</sub> or H<sub>2</sub>S may also combine with hydrocarbon to form organic sulfides (mercaptans, thiophenes, benzothiophenes, and coke), therefore, in this paper, the thermodynamic theoretical calculations are examined for the reduction of SO<sub>2</sub> to form H<sub>2</sub>S and the reaction to form organic sulfides. For the reduction of SO<sub>2</sub> by hydrocarbons to form H<sub>2</sub>S or sulfur, a selection of compounds, including H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, ethylene (C<sub>2</sub>H<sub>4</sub>), propane (C<sub>3</sub>H<sub>8</sub>), propylene (C<sub>3</sub>H<sub>6</sub>), 1-butene  $(n-C_4H_8)$ , and *n*-butane  $(n-C_4H_{10})$ , were chosen to represent FCC cracked gas. Additionally, *n*-heptane (*n*-C<sub>7</sub>H<sub>16</sub>), 1-heptene (1-C<sub>7</sub>H<sub>14</sub>), methylcyclohexane (Cyc-C<sub>7</sub>H<sub>14</sub>), methylbenzene (C<sub>7</sub>H<sub>8</sub>) and Phenanthrene  $(C_{14}H_{10})$  were chosen to represent FCC liquid products. Heptazethrene  $(C_{28}H_{16})$  was chosen to represent polycyclic aromatic hydrocarbon (PAH) in FCC coke. For typical organic sulfides generated during the FCC process, heptanethiol (C7H16S), propylthiophene  $(C_7H_{10}S)$ , 2,5-dimethylthiophene  $(C_{6}H_{8}S),$ 

Table 4





Fig. 4. Schematic diagram of the process for reducing SO<sub>x</sub> in a riser apparatus.

benzothiophene ( $C_8H_6S$ ) were chosen to represent sulfide in FCC liquid products, a sulfur-containing polycyclic aromatic hydrocarbon (S-PAH)  $C_{28}H_{20}S$  was chosen to represent sulfide in FCC coke.

It is important to note that under FCC conditions, the catalyst remains in a solid state, while all other reactants are gaseous. Furthermore, the molar ratio of  $SO_2$  to  $SO_3$  in  $SO_x$  is maintained at 100:1, and the reduction products of  $SO_x$  are either  $H_2S$  or  $S_2$ . To exemplify the reactions involved in reducing SO<sub>2</sub>, Table 5 provides an overview of the central zones and typical reaction equations in the riser reactor. The main reactions associated with the catalyst are shown in reactions 1-7, including the reaction of alumina (the main component of the FCC catalyst) with  $SO_x$  to form sulfate or sulfite, and the reduction of sulfate or sulfite by hydrogen or hydrocarbons to sulfide salts, oxides, and similar byproducts. Since the catalysts are distributed throughout the reactor, these reactions are taken into account in all three reaction zones, for the prelift zone and the upper zone of the riser, the sulfate reduction is mainly H<sub>2</sub> in the H<sub>2</sub>rich cracked gas (n = 0 in the relative reaction equation), and for the lower zone of the riser, the sulfate reduction is mainly with the  $C_5-C_{12}$  hydrocarbons, *n*-heptane (*n*- $C_7H_{16}$ ) is chosen in this study.

| Name            | Reaction zone 1                                                                                  | Reaction zone 2                                    | Reaction zone 3                                         |  |  |
|-----------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|--|--|
| Position        | Pre-lift zone                                                                                    | Lower zone of the riser                            | Upper zone of the riser                                 |  |  |
| Temperature, °C | 600-650                                                                                          | 500-600                                            | 450-550                                                 |  |  |
| Residence time, | 0–3                                                                                              | 1-3                                                | 1–3                                                     |  |  |
| S               |                                                                                                  |                                                    |                                                         |  |  |
| Main reactant   | Prelift dry gas (H <sub>2</sub> , CH <sub>4</sub> , C <sub>2</sub> H <sub>6</sub> ) and catalyst | FCC liquid products ( $\geq C_5$ hydrocarbons) and | FCC cracked gas ( $H_2$ and $C_1-C_4$ hydrocarbons) and |  |  |
|                 |                                                                                                  | catalyst                                           | catalyst                                                |  |  |
|                 |                                                                                                  |                                                    |                                                         |  |  |

| Summary of main SO <sub>x</sub> -reduced reactions in riser reactor. |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

| Number | Reaction equations                                                                                                        | Reaction zone |
|--------|---------------------------------------------------------------------------------------------------------------------------|---------------|
| 1      | $Al_2O_3(s) + 3SO_3 = Al_2(SO_4)_3(s)$                                                                                    | 1–3           |
| 2      | $Al_2O_3(s) + 3SO_2 = Al_2(SO_3)_3(s)$                                                                                    | 1-3           |
| 3      | $Al_2(SO_4)_3(s) + 12C_nH_{2n+2} = Al_2S_3(s) + 12H_2O + 12C_nH_{2n}$                                                     | 1-3           |
| 4      | $Al_2(SO_4)_3(s) + 12 C_n H_{2n+2} = Al_2O_3(s) + 9H_2O + 3H_2S + 12C_n H_{2n}$                                           | 1-3           |
| 5      | $Al_2(SO_3)_3(s) + 9 C_nH_{2n+2} = Al_2S_3(s) + 9H_2O + 9C_nH_{2n}$                                                       | 1-3           |
| 6      | $Al_2(SO_3)_3(s) + 9 C_n H_{2n+2} = Al_2O_3(s) + 6H_2O + 3H_2S + 9C_n H_{2n}$                                             | 1-3           |
| 7      | $Al_2S_3(s) + 3H_2O = Al_2O_3(s) + 3H_2S$                                                                                 | 1-3           |
| 8      | $3H_2 + SO_2 = H_2S + 2H_2O$                                                                                              | 1             |
| 9      | $3/4CH_4 + SO_2 = H_2S + 1/2H_2O + 3/4CO_2$                                                                               | 1             |
| 10     | $3/7C_2H_6 + SO_2 = H_2S + 2/7H_2O + 6/7CO_2$                                                                             | 1             |
| 11     | $2H_2 + SO_2 = 1/2S_2 + 2H_2O$                                                                                            | 1             |
| 12     | $1/2CH_4 + SO_2 = 1/2S_2 + H_2O + 1/2CO_2$                                                                                | 1             |
| 13     | $2/7C_2H_6+SO_2 = 1/2S_2+6/7H_2O+4/7CO_2$                                                                                 | 1             |
| 14     | $3n-C_7H_{16} + SO_2 = H_2S + 31-C_7H_{14} + 2H_2O$                                                                       | 2             |
| 15     | $3n-C_7H_{16} + SO_2 = H_2S + 3C_4H_8 + 3C_3H_6 + 2H_2O_6$                                                                | 2             |
| 16     | $1-C_7H_{14} + SO_2 = H_2S + C_7H_8 + 2H_2O$                                                                              | 2             |
| 17     | $Cyc-C_7H_{14} + SO_2 = H2S + C_7H_8 + 2H_2O$                                                                             | 2             |
| 18     | $2C_7H_8 + SO_2 = H_2S + C_{14}H_{10} + 2H_2O$                                                                            | 2             |
| 19     | $0.5C_7H_8 + 0.51-C_7H_{14} + SO_2 = H_2S + 0.5C_{14}H_{10} + 2H_2O$                                                      | 2             |
| 20     | $3C_{14}H_{10}+SO_2=H_2S+2H_2O+1.5C_{28}H_{18}$                                                                           | 2             |
| 21     | $2n-C_7H_{16} + SO_2 = 1/2S_2 + 21-C_7H_{14} + 2H_2O_7$                                                                   | 2             |
| 22     | $2n-C_7H_{16}+SO_2 = 1/2S_2 + 2C_4H_8 + 2C_3H_6 + 2H_2O_6$                                                                | 2             |
| 23     | $2/31-C_7H_{14}+SO_2 = 1/2S_2 + 2/3C_7H_8 + 2H_2O$                                                                        | 2             |
| 24     | $2/3$ Cyc-C <sub>7</sub> H <sub>14</sub> + SO <sub>2</sub> = $1/2S_2 + 2/3C_7H_8 + 2H_2O$                                 | 2             |
| 25     | $4/3C_7H_8 + SO_2 = 1/2S_2 + 2/3C_{14}H_{10} + 2H_2O$                                                                     | 2             |
| 26     | $1/3C_7H_8 + 1/31-C_7H_{14} + SO_2 = 1/2S_2 + 1/3C_{14}H_{10} + 2H_2O_{14}$                                               | 2             |
| 27     | $4C_{14}H_{10} + SO_2 = 1/2S_2 + 2H_2O + 2C_{28}H_{18}$                                                                   | 2             |
| 28     | $1\text{-}C_6H_{12} + SO_2 = C_6H_8S + 2H_2O$                                                                             | 2             |
| 29     | $1 - C_7 H_{14} + SO_2 = C_7 H_{10} S + 2H_2 O$                                                                           | 2             |
| 30     | $1/2 \ 1-C_8H_{16} + SO_2 = 1/2C_8H_6S + 1/2H_2S + 2H_2O$                                                                 | 2             |
| 31     | $3/10C_{14}H_{10} + SO_2 + 3/5C_7H_{14} = 2H_2O + 7/10H_2S + 3/10C_{28}H_{20}S$                                           | 2             |
| 32     | $1 \text{-} C_7 H_{14} + H_2 S = C_7 H_{16} S$                                                                            | 2             |
| 33     | $19/10C_{14}H_{10} + H_2S + 1/51 - C_7H_{14} = C_{28}H_{20}S + 19/10H_2$                                                  | 2             |
| 34     | $C_7H_{14} + H_2S = C_7H_{10}S + 3H_2$                                                                                    | 2             |
| 35     | $1\text{-}C_8H_{16} + H_2S = C_8H_6S + 6H_2$                                                                              | 2             |
| 36     | $3H_2 + SO_2 = H_2S + 2H_2O$                                                                                              | 3             |
| 37     | $3/4CH_4 + SO_2 = H_2S + 1/2H_2O + 3/4CO_2$                                                                               | 3             |
| 38     | $3/7C_2H_6 + SO_2 = H_2S + 2/7H_2O + 6/7CO_2$                                                                             | 3             |
| 39     | $1/2C_2H_4 + SO_2 = H_2S + CO_2$                                                                                          | 3             |
| 40     | $3/10C_3H_8 + SO_2 = H_2S + 9/10CO_2 + 1/5H_2O$                                                                           | 3             |
| 41     | $1/3C_{3}H_{6}+SO_{2}=H_{2}S+CO_{2}$                                                                                      | 3             |
| 42     | $3/13n-C_4H_{10}+SO_2 = H_2S + 12/13CO_2 + 2/13H_2O$                                                                      | 3             |
| 43     | $1/4n-C_4H_8+SO_2=H_2S+CO_2$                                                                                              | 3             |
| 44     | $2H_2 + SO_2 = 1/2S_2 + 2H_2O$                                                                                            | 3             |
| 45     | $1/2CH_4 + SO_2 = 1/2S_2 + H_2O + 1/2CO_2$                                                                                | 3             |
| 46     | $2/7C_2H_6+\ SO_2=1/2S_2+\ 6/7H_2O+\ 4/7CO_2$                                                                             | 3             |
| 47     | $1/3C_2H_4+SO_2 = 1/2S_2+2/3CO_2+2/3H_2O$                                                                                 | 3             |
| 48     | $1/5C_3H_8 + SO_2 = 1/2S_2 + 3/5CO_2 + 4/5H_2O$                                                                           | 3             |
| 49     | $2/9C_3H_6+\ SO_2=1/2S_2+\ 2/3CO_2+\ 2/3H_2O$                                                                             | 3             |
| 50     | $2/13n\text{-}C_4\text{H}_{10}\text{+}\text{ SO}_2 = 1/2\text{S}_2\text{+}8/13\text{CO}_2\text{+}10/13\text{H}_2\text{O}$ | 3             |
| 51     | $1/6n-C_4H_8+SO_2 = 1/2S_2+2/3CO_2+2/3H_2O$                                                                               | 3             |

For the reduction of SO<sub>x</sub> by H<sub>2</sub> or hydrocarbons, the prelift zone includes reactions 8–13, involving the H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> reduction of SO<sub>x</sub> to H<sub>2</sub>S or S<sub>2</sub>. Reactions 14–35, taking place in the lower zone of the riser, reactions 14–27 show the reduction of SO<sub>2</sub> by FCC liquid products, primarily alkanes undergoing direct dehydrogenation or cracking dehydrogenation, olefins undergoing cyclization and aromatization dehydrogenation, cycloalkanes being dehydrogenated, and aromatics participating in condensation with olefins or other aromatics to facilitate dehydrogenation. Reactions 28–31 depict the formation of thiophene and benzothiophene compounds from olefins and SO<sub>2</sub>. In the upper zone of the riser, reactions 36–51 involve the reduction of SO<sub>2</sub> by FCC cracked gas, resulting in the generation of CO<sub>2</sub>, H<sub>2</sub>S, or S<sub>2</sub> as the primary products.

3.2. Thermodynamic analysis of  $SO_x$  reduction in riser

## 3.2.1. Thermodynamic equilibrium of the reactions

Upon entering the riser,  $SO_x$  undergoes a reduction in the 1–3 reaction zones. This study calculates the Gibbs free energy ( $\Delta G$ ) and thermodynamic constants (k) for typical reactions 1–51 based on the information presented in Table 5. The variations in  $-\Delta G$  and log k with reaction temperature for different reactions are illustrated in Fig. 5(a)–5(h). Notably, the log k values for all reduction reactions, except for the dehydrogenation of alkanes to reduce SO<sub>2</sub> to S<sub>2</sub>, exceeded 5. This suggests that when thermodynamic equilibrium is achieved, SO<sub>2</sub> can be completely reduced. Moreover, when the reduction product is H<sub>2</sub>S, the values of  $-\Delta G$  and log k are more pronounced than when the product is S<sub>2</sub>, sulfur-containing salts, thiophene or S-PAH. Consequently, it becomes more difficult for S<sub>2</sub>, sulfur-containing salts, thiophene or S-PAH to form, and SO<sub>2</sub> is thermodynamically more inclined to be reduced to H<sub>2</sub>S in the 3

F.-L. Dang, G. Wang, J.-C. Lian et al.

Petroleum Science 22 (2025) 909-924



**Fig. 5.** Schematic diagram of  $-\Delta G$  and log k of reduction of SO<sub>x</sub> in riser reactor. (a)  $-\Delta G$  for catalyst-related reactions in the three reaction zones, (b) log k for catalyst-related reactions in the three reaction zones, (c)  $-\Delta G$  in dry gas (H<sub>2</sub>-rich) pre-lift zone, (d) log k in dry gas (H<sub>2</sub>-rich) pre-lift zone, (e)  $-\Delta G$  in the lower zone of riser, (f) log k in the lower zone of riser, (g)  $-\Delta G$  in the upper zone of riser, (h) log k in the upper zone of riser.

reaction zones. For the reactions of  $H_2S$  with olefins and aromatics to form sulfur-containing hydrocarbons, the formation of thiols or thiophenes' log k is less than 3, the log k of the sulfur-containing coke formation exceeds 5. Considering the susceptibility of thiophenes to condensation to form S-PAH,  $H_2S$  is thermodynamically likely to increase the sulfur content of coke.

As depicted in Fig. 5(a)-5(b), in the three reaction zones

(450–650 °C), the log *k* for the generation of sulfate or sulfite significantly decreases as the temperature increases. On the other hand, the log *k* for the generation of aluminum sulfide from the hydrogen or hydrocarbons reduction of alumina sulfate increases, while the log *k* for other reduced sulfur-containing species only slightly decreases. These observations indicate that higher reaction temperatures are favorable for the conversion of SO<sub>x</sub> to H<sub>2</sub>S in the

#### Table 6

Typical FCC conditions and product distribution of heavy oil in riser.

| ltems                                           | Value  | Items                                     | Value |
|-------------------------------------------------|--------|-------------------------------------------|-------|
| Feedstock density (20 °C), g · cm <sup>-3</sup> | 0.8986 | Gasoline composition, wt%                 |       |
| Sulfur content, wt%                             | 0.35   | Paraffin                                  | 27.27 |
| Temperature, °C                                 |        | Olefin                                    | 34.56 |
| Pre-lift zone, °C                               | 660    | Naphthene                                 | 6.90  |
| Lower zone of the riser, °C                     | 570    | Aromatics                                 | 31.27 |
| Upper zone of the riser, °C                     | 550    | Cracked gas composition, wt%              |       |
| Residence time, s                               | 1.24   | Hydrogen (H <sub>2</sub> )                | 1.61  |
| Mass ratio of catalyst to oil                   | 15     | Methane (CH <sub>4</sub> )                | 3.71  |
| Distribution of products, wt%                   |        | Ethane $(C_2H_6)$                         | 2.39  |
| Cracked gas (H <sub>2</sub> -C <sub>4</sub> )   | 22.57  | Ethylene ( $C_2H_4$ )                     | 5.81  |
| Gasoline (C <sub>5</sub> -200 °C)               | 39.63  | Propane (C <sub>3</sub> H <sub>8</sub> )  | 3.57  |
| Diesel (200–350 °C)                             | 18.64  | Propylene $(C_3H_6)$                      | 30.39 |
| Slurry oil (>350 °C)                            | 11.66  | Butanes (C <sub>4</sub> H <sub>10</sub> ) | 16.2  |
| Coke                                            | 7.49   | Butenes (C <sub>4</sub> H <sub>8</sub> )  | 36.32 |

#### Table 7

The molar quantity of initial reducing reactants in the riser reactor.

| Name                              | Molar quantity | Name                           | Molar quantity |
|-----------------------------------|----------------|--------------------------------|----------------|
| SO <sub>x</sub> gas               |                | C <sub>7</sub> H <sub>8</sub>  | 0.249          |
| SO <sub>2</sub>                   | 1.000          | Al <sub>2</sub> O <sub>3</sub> | 43.000         |
| SO₃                               | 0.010          | Upper zone of the riser        |                |
| Pre-lift zone                     |                | H <sub>2</sub>                 | 3.000          |
| H <sub>2</sub>                    | 3.000          | CH <sub>4</sub>                | 0.865          |
| CH <sub>4</sub>                   | 0.865          | $C_2H_6$                       | 0.297          |
| $C_2H_6$                          | 0.297          | $C_2H_4$                       | 0.775          |
| Al <sub>2</sub> O <sub>3</sub>    | 43.000         | $C_3H_8$                       | 0.303          |
| Lower zone of the riser           |                | C <sub>3</sub> H <sub>6</sub>  | 2.702          |
| C <sub>7</sub> H <sub>16</sub>    | 0.200          | C <sub>4</sub> H <sub>10</sub> | 1.043          |
| 1-C <sub>7</sub> H <sub>14</sub>  | 0.259          | C <sub>4</sub> H <sub>8</sub>  | 2.422          |
| Cyc-C <sub>7</sub> H <sub>8</sub> | 0.052          | $Al_2O_3$                      | 43.000         |

Note: The molar quantity of SO<sub>2</sub> in the table are baseline 1 mol, and other species are based on SO<sub>2</sub>.



**Fig. 6.** Products distribution after SO<sub>x</sub> reduction in riser after thermodynamic equilibrium. (a) Equilibrium distribution of sulfur-containing products in dry gas (H<sub>2</sub>-rich) pre-lift zone, (b) Equilibrium distribution of products in the lower zone of riser, (c) Equilibrium distribution of products in the upper zone of riser.

### F.-L. Dang, G. Wang, J.-C. Lian et al.

#### Table 8

| The initial molar ratio of reactants in | the experiment |
|-----------------------------------------|----------------|
|-----------------------------------------|----------------|

| Item                                                                         | Value | Item                                                             | Value |
|------------------------------------------------------------------------------|-------|------------------------------------------------------------------|-------|
| SO <sub>2</sub> reduced by H <sub>2</sub>                                    |       | $SO_2$ reduced by $H_2$ , $CH_4$ and $C_2H_6$                    |       |
| Initial H <sub>2</sub> /SO <sub>2</sub> , mol/mol                            | 8:1   | Initial H <sub>2</sub> /SO <sub>2</sub> , mol/mol                | 8:1   |
| SO <sub>2</sub> reduced by CH <sub>4</sub> and C <sub>2</sub> H <sub>6</sub> |       | Initial CH <sub>4</sub> /SO <sub>2</sub> , mol/mol               | 9:1   |
| Initial CH <sub>4</sub> /SO <sub>2</sub> , mol/mol                           | 9:1   | Initial C <sub>2</sub> H <sub>6</sub> /SO <sub>2</sub> , mol/mol | 3:1   |
| Initial C <sub>2</sub> H <sub>6</sub> /SO <sub>2</sub> , mol/mol             | 3:1   | 1                                                                | 1     |

#### riser.

By comparing the magnitudes of  $-\Delta G$  and log k for SO<sub>2</sub> reduction of different hydrocarbons in the prelift, lower and upper zones of the riser (450–650  $^{\circ}$ C), as shown in Fig. 5(c)–5(h), we can obtain the following information: hydrocarbon aromatization, condensation dehydrogenation, and cleavage dehydrogenation for SO<sub>2</sub> reduction are strong, suggesting that SO<sub>2</sub> is more likely to be reduced by hydrogen during these reactions, during the aromatic condensation process, the combination of aromatics with SO<sub>2</sub> to form S-PAH is also significant. Consequently, elemental S is more prone to form coke or cracked gas when thermodynamic equilibrium is reached. Compared with alkanes, olefins possess a greater ability to reduce SO<sub>2</sub>. Therefore, the content of olefins in FCC cracked gas may decrease after SO<sub>2</sub> passes into the upper zone of the riser. Furthermore, after the reaction reaches thermodynamic equilibrium, higher temperatures and a greater number of hydrocarbon carbons favor the reduction of SO<sub>2</sub>.

## 3.2.2. Calculation of thermodynamic equilibrium concentration

To further investigate the thermodynamic equilibrium concentration of the reduction system, a pre-evaluation was first performed, as shown in Table 6 (Wang, 2006), the heavy oil feedstock sulfur content is 0.35 wt%, even if all the S in feedstock enters the FCC flue gas, the SO<sub>x</sub> entering the riser is theoretically at most 0.9 wt% of the heavy oil mass, at this point, the molar ratio of FCC product H<sub>2</sub> to SO<sub>x</sub> has exceeded 16. In the SO<sub>x</sub> reduction process, we can increase the SO<sub>x</sub> concentration by improving the SO<sub>x</sub> flow. In the SO<sub>x</sub> reduction thermodynamic equilibrium calculations, we set the reduced SO<sub>x</sub> concentration larger than the theoretical value 16 to enhance the persuasiveness of the process in dealing with larger SO<sub>x</sub> concentrations.

We made the following assumptions. First, we set the  $SO_2/SO_3$ molar ratio in the  $SO_x$  gas to 100 in all three reaction zones. Second, considering that at least 3 mol of  $H_2$  are required for the complete reduction of 1 mol of  $SO_2$  to  $H_2S$ , we set the  $H_2/SO_2$  molar ratio to 3 in the prelift zone and the upper zone of the riser, and set the  $C_7H_{16}/$  $SO_2$  molar ratio in the lower zone of the riser to 0.2. Then, for the prelift zone, as shown in Table 6 and if all  $H_2$  is derived from the FCC product, the yield is approximately 0.36 wt%. With a catalyst-oil ratio of 15 and an  $Al_2O_3$  content of approximately 50%, the  $Al_2O_3/$  $H_2$  molar ratio was 41. Finally, for the two reaction zones of the riser, the molar amounts of other reductants were calculated based on the composition of cracked gas and gasoline data from a typical FCC product distribution, as presented in Table 6. The calculated molar amounts of the initial reactants are displayed in Table 7.

The thermodynamic equilibrium compositions at different temperatures in the three reaction zones are illustrated in Fig. 6. Fig. 6(a)-6(c) indicates that  $Al_2S_3$ ,  $Al_2(SO_4)_3$ , and  $Al_2(SO_3)_3$  are not produced after reaching thermodynamic equilibrium. This signifies that the catalyst remains unaffected during the reduction of  $SO_x$  in the riser. Once thermodynamic equilibrium is reached,  $SO_x$  can be fully converted to  $H_2S$  at prelift zone and upper zone of the riser,  $H_2S$  selectivity exceeded 99.98% and sulfur-containing aromatics selectivity was less than 0.02% in the lower zone of the riser. This implies that  $SO_x$  is almost completely converted to  $H_2S$  in all three

reaction zones of the reactor, only traces of S-PAHs are generated in the lower zone of the riser.

As shown in Fig. 6(b), after attaining thermodynamic equilibrium, the hydrocarbon products primarily consisted of C<sub>28</sub>H<sub>18</sub>,  $C_7H_8$ ,  $C_{14}H_{10}$  and  $C_3-C_4$  olefins, S-containing products were mainly H<sub>2</sub>S (about 30.5 wt%), with traces of S-PAH generated (0.01-0.03 wt %). This suggests that the reduction of  $SO_x$  by the FCC liquid products is mainly achieved through condensation dehydrogenation, aromatization dehydrogenation, and cracking dehydrogenation. As demonstrated in Fig. 6(b)-6(c), the reaction temperature decreases with the height of the riser, resulting in a gradual decrease in C<sub>2</sub>-C<sub>4</sub> olefins and a gradual increase in C<sub>1</sub>-C<sub>4</sub> alkanes, toluene and polycyclic aromatics. This implies that alkane cracking dehydrogenation reactions and the reduction of  $SO_x$  with  $C_1-C_4$  alkanes are hindered, while the reduction of  $SO_x$  with  $C_2-C_4$  olefins, the aromatization reaction to produce toluene and the aromatics condensation reaction are promoted. From a thermodynamic perspective, the consumption of olefins in the cracked gas may occur as the reaction temperature decreases or the residence time of SO<sub>x</sub> increases. Moreover, SO<sub>x</sub> reduction may result in slightly higher yield and sulfur content in coke.

## 3.3. Simulation of hydrogen reduction of SO<sub>2</sub> in riser

#### 3.3.1. Preliminary experimental investigations

Thermodynamic equilibrium concentration calculations indicate that  $SO_x$  gas can be completely transformed into  $H_2S$  when introduced into the prelift zone, lower zone, and upper zone of the riser. Consequently, the primary objective in the industrial process of achieving complete reduction of  $SO_x$  to  $H_2S$  involves increasing the reaction rate or prolonging the reaction time to ensure that the reaction reaches thermodynamic equilibrium as quickly as possible. This can be accomplished by elevating the reaction temperature and employing catalysts to increase the reaction rate. In this study, an STR was utilized to simulate the riser reactor, for reducing  $SO_2$ using  $H_2$  gas,  $CH_4$  and  $C_2H_6$  mixed gas,  $H_2$ ,  $CH_4$  and  $C_2H_6$  mixed gas, respectively. The initial reactants' molar ratio is shown in Table 8. Fig. 7 illustrates the conversion of the simulated reduction of  $SO_2$ .

In these experimental sets, when the SO<sub>2</sub> conversion reached 100%, H<sub>2</sub>S selectivity was 100%. As depicted in Fig. 7(a), it is evident that the conditions required for complete conversion of SO<sub>2</sub> to H<sub>2</sub>S are a reaction time of 5.4 s and a temperature above 600 °C when no FCC catalyst is utilized. The conversion of SO<sub>2</sub> to H<sub>2</sub>S can be achieved by H<sub>2</sub> in the dry gas (H<sub>2</sub>-rich) prelift zone (600–650 °C, 2.7 s, FCC fresh or equilibrium catalyst) and the riser zone (>475 °C, 2.7 s, FCC equilibrium catalyst). In the presence of FCC fresh catalyst, SO<sub>2</sub> can be entirely converted to H<sub>2</sub>S when the reaction temperature exceeds 550 °C. Similarly, with the FCC equilibrium catalyst, SO<sub>2</sub> can be completely converted to H<sub>2</sub>S at a reaction temperature above 475 °C.

By comparing the minimum reaction temperature required for the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S, it is observed that the FCC equilibrium catalyst requires a temperature 75 °C lower than that of the FCC fresh catalyst. This discrepancy can be attributed to the fact that the FCC equilibrium catalyst may contain higher



Fig. 7. SO<sub>2</sub> conversion under different reaction conditions. (a) SO<sub>2</sub> is reduced by hydrogen, (b) SO<sub>2</sub> is reduced by methane and ethane, (c) SO<sub>2</sub> is reduced by hydrogen or hydrogen, methane and ethane mixed gas with FCC equilibrium catalyst in 2.7 s.



**Fig. 8.** SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at different conditions. (a) H<sub>2</sub>/SO<sub>2</sub> molar ratio = 11, reaction time = 1.8 s, (b) H<sub>2</sub>/SO<sub>2</sub> molar ratio = 11, reaction time = 3.5 s, (c) H<sub>2</sub>/SO<sub>2</sub> molar ratio = 16, reaction time = 2.7 s, (e) H<sub>2</sub>/SO<sub>2</sub> molar ratio = 25, reaction time = 1.0 s, (f) H<sub>2</sub>/SO<sub>2</sub> molar ratio = 25, reaction time = 2.0 s.

concentrations of Fe, Ni, and V, some studies have shown that, these metals on the catalyst can promote the dissociation of hydrogen and facilitate the reduction of SO<sub>2</sub> (Doumani et al., 1944; Hu et al., 2002; Li and Hung, 2003; Wang et al., 2019). Consequently, the FCC equilibrium catalyst exhibits superior hydrogenation performance and is more conducive to the  $H_2$  reduction of SO<sub>2</sub>.

As shown in Fig. 7(b), the CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mixed gas was used to reduce SO<sub>2</sub>, and the SO<sub>2</sub> conversion below 30% all along, they are less efficient than H<sub>2</sub> in the SO<sub>2</sub> reduction. Fig. 7(c) further compares the reduction of SO<sub>2</sub> by H<sub>2</sub> or a mixture of H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>, there is no difference in the SO<sub>2</sub> conversion, or H<sub>2</sub>S yield between the two gases at the same temperature. It proves that SO<sub>2</sub> can be completely reduced to H<sub>2</sub>S with dry gas (H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mixed gas) above 475 °C. However, the introduction of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> has no improvement on the SO<sub>2</sub> conversion and H<sub>2</sub>S yield, and H<sub>2</sub> in the dry gas plays a primary role in the SO<sub>2</sub> reduction. Thus, the

following study will focus on the reaction pattern of  $\rm H_2$  reduction of  $\rm SO_2$  under FCC conditions.

## 3.3.2. Effect of conditions on the reduction of $SO_2$ by $H_2$

The preceding results demonstrate that the reduction of  $SO_2$  in the riser is influenced by both the kinetic reaction rate and the reaction time. The conversion of  $SO_2$  can be controlled by adjusting the reaction temperature,  $H_2/SO_2$  molar ratio, and reaction time. Notably, the reaction temperature has a significant impact on the reaction rate. The influence of the  $H_2/SO_2$  molar ratio is more intricate. When the amount of  $SO_2$  in the riser is held constant and the  $H_2/SO_2$  molar ratio is increased, the corresponding reaction time decreases, thereby enhancing the contact between  $H_2$  and  $SO_2$ within a given timeframe. However, reducing the reaction time does not favor an increase in the conversion. To investigate the conversion behavior of  $SO_2$  under different conditions, the



Fig. 9. Comparison of partial catalyst properties before and after SO<sub>2</sub> reduction. (a) Surface area and Pore volume, (b) XRD pattern, (c) FTIR spectra, (d) Micro-activity index.

influence of the  $H_2/SO_2$  molar ratio and reaction time on  $SO_2$  conversion and  $H_2S$  selectivity was examined at different reaction temperatures using an FCC equilibrium catalyst.

There are three main successive parallel reactions involved in the reduction of SO<sub>2</sub> by H<sub>2</sub>: SO<sub>2</sub> reacts with H<sub>2</sub> to form H<sub>2</sub>S, SO<sub>2</sub> reacts with H<sub>2</sub>S to form sulfur, and sulfur is further reduced to H<sub>2</sub>S by H<sub>2</sub> (Larraz, 2002). As illustrated in Fig. 8, prolonging the reaction time by 1–1.7 s decreases the minimum temperature required for the complete reduction of SO<sub>2</sub> to H<sub>2</sub>S by 25–75 °C when the H<sub>2</sub>/SO<sub>2</sub> molar ratio remains constant. This extension of the reaction time promotes the complete conversion of both SO<sub>2</sub> and sulfur into H<sub>2</sub>S. Furthermore, it is noteworthy that the minimum temperature for the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S is slightly higher than the temperature for the complete conversion of SO<sub>2</sub> alone, indicating that higher reaction temperatures are favorable for enhancing H<sub>2</sub>S selectivity.

By increasing the H<sub>2</sub>/SO<sub>2</sub> molar ratio from 11 to 25, the reaction time for SO<sub>2</sub> reduction decreased from 1.8–3.5 s to 1–2 s. The reduction effect of SO<sub>2</sub> initially increases and then decreases, suggesting that the optimal conversion of SO<sub>2</sub> can be achieved by matching the appropriate H<sub>2</sub>/SO<sub>2</sub> molar ratio and reaction time. In this case, the optimal molar ratio was 16, the reaction time was 1.3–2.7 s, and the temperature for the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S ranged from 450 to 475 °C.

#### 3.3.3. Catalyst evaluation

FCC equilibrium catalyst before (E-catB) and after  $SO_2$  reduction(E-catA) were characterized. E-catA was the post- $SO_2$  reduction (the  $H_2/SO_2$  was 16 and  $H_2S$  yield was 100%) FCC

equilibrium catalyst, and SO<sub>2</sub> reduction experiments were performed continuously for 5 h before characterisation. As shown in Fig. 9(c), the infrared absorption peak at 1083 cm<sup>-1</sup> was attributed to the bidentate sulfate O=S=O covalent group (SO<sub>4</sub><sup>2-</sup>) (Abdulhamid et al., 2006; Chen et al., 2011; Li et al., 2021), indicating that the equilibrium catalyst contains sulfate. As depicted in Fig. 9, the surface area, pore volume, XRD pattern, infrared spectra and microactivity of the FCC equilibrium catalyst remain unchanged before and after the SO<sub>2</sub> reduction. It demonstrated that no new group structures were produced on the catalyst after the SO<sub>2</sub> reduction.

Further examining the heavy oil FCC performance with E-catB and E-catA in detail. As depicted in Fig. 10, the product distributions, cracked gas composition, gasoline PONA composition, and product sulfur content were the same with two catalysts, indicating that the FCC equilibrium catalysts' catalytic cracking performance was unchanged after SO<sub>2</sub> reduction.

### 3.4. Lower limit of reaction time and kinetic modeling

#### 3.4.1. Lower reaction time limit

During the reduction of  $SO_2$ , it is essential to minimize the reaction time in the riser to minimize its effect on the FCC reactions of petroleum hydrocarbons. To achieve this, the shortest reaction time for the complete reduction of  $SO_2$  to  $H_2S$  by  $H_2$  was investigated. The  $SO_2$  conversion was examined at reaction times ranging from 0.1 to 0.7 s while maintaining a  $H_2/SO_2$  molar ratio of 16. Additionally, the  $H_2S$  selectivity was evaluated when the  $SO_2$  conversion reached 100%.

As depicted in Fig. 11(a), at a temperature of 600  $^\circ C$  and a



Fig. 10. Parity plots comparing E-catB and E-catA experimental values. (a) FCC product distributions, (b) FCC cracked gas composition, (c) FCC gasoline composition, (d) FCC product sulfur content.

reaction time of more than 0.1 s, complete conversion of SO<sub>2</sub> to H<sub>2</sub>S can be achieved, with H<sub>2</sub>S selectivity reaching 100%. Fig. 11(b)–11(f) shows that as the reaction temperature ranged from 485 to 500 °C, the shortest reaction time required for the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S decreased gradually from 0.7 to 0.4 s. This indicates that the conversion of SO<sub>2</sub> to H<sub>2</sub>S is fast and that the reaction temperature plays a crucial role. From these findings, it can be inferred that when H<sub>2</sub> is used in the prelift zone (>600 °C), complete conversion of SO<sub>2</sub> to H<sub>2</sub>S can occur in more than 0.1 s, and the reaction time is not a limiting factor. In the riser zone (485–500 °C), complete conversion of SO<sub>2</sub> to H<sub>2</sub>S can be achieved in a reaction time of more than 0.7 s.

## 3.4.2. Kinetic modelling

Based on the experimental data presented in Fig. 11, it is evident that in the riser zone (475–500 °C), the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S by H<sub>2</sub> within a short reaction time is challenging. Therefore, it becomes necessary to explore the kinetic conversion characteristics and determine the conversion law within this operating range. This information is crucial in guiding the maximization of SO<sub>2</sub> conversion to H<sub>2</sub>S. As a result, kinetic modeling of the reduction of SO<sub>2</sub> by H<sub>2</sub> in the riser zone (475–500 °C) was conducted. During the reduction of SO<sub>2</sub> by H<sub>2</sub>, H<sub>2</sub>S or sulfur can be generated. Hence, the total reaction equation is expressed as:

$$(2+x)H_2 + SO_2 = xH_2S + (1-x)S + 2H_2O$$
(5)

Considering that the molar amount of  $H_2$  is significantly greater than that of SO<sub>2</sub>, the concentration of  $H_2$  in the kinetic equation is treated as a constant. Consequently, the reaction can be considered a first-order reaction. The corresponding kinetic mathematical equation can be expressed as:

$$\frac{\mathrm{d}C_{\mathrm{A}}}{\mathrm{d}t} = -KC_{\mathrm{A}} \tag{6}$$

$$C_{\rm A} = C_{\rm A0}(1 - X_{\rm a}) \tag{7}$$

Where  $C_A$  is the mass concentration of SO<sub>2</sub>, t(s) is the reaction time,  $K(s^{-1})$  is the reaction rate constant,  $C_{A0}$  is the initial mass concentration of SO<sub>2</sub>, and  $X_a$  is the conversion of SO<sub>2</sub>. Transform the above equations:

$$\ln C_{\rm A} - \ln C_{\rm A0} = -Kt \tag{8}$$

$$\ln\left(\frac{1}{1-X_{a}}\right) = Kt \tag{9}$$

The curves of ln  $(1/(1-X_a))$ -reaction time are shown in Fig. 12. The corresponding  $R^2$  values for the relevant indexes are all greater



**Fig. 11.** SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at reaction times of 0.1–0.7 s. (**a**) SO<sub>2</sub> conversion at different temperature, (**b**) SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at 475 °C, (**c**) SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at 485 °C, (**d**) SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at 490 °C, (**e**) SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at 495 °C, (**f**) SO<sub>2</sub> conversion and H<sub>2</sub>S selectivity at 500 °C.

than 0.98. The data points in the graph exhibit a significant linear relationship, suggesting that the reaction aligns more closely with the first-order kinetic reaction model. Consequently, the reduction of SO<sub>2</sub> by H<sub>2</sub> in the riser zone (475–500 °C) can be viewed as a first-order reaction. The kinetic rate constants k and the corresponding indices at different temperatures are tabulated in Table 9, with k increasing as the temperature increases.

By utilizing the Arrhenius formula, it is possible to determine the average activation energy ( $E_a$ ) for the reduction of SO<sub>2</sub> by H<sub>2</sub> at 475–500 °C. The curve of ln K-1000/T is depicted in Fig. 13. The calculations indicate that the  $E_a$  of the reaction within the temperature range of 475–500 °C is 263 kJ/mol. Based on the literature, the  $E_a$  for the reduction of SO<sub>2</sub> subsequent to the dissociation of H<sub>2</sub> into free radicals is 413.6 kJ/mol. Hence, it can be inferred that the  $E_a$ for the reduction of SO<sub>2</sub> by hydrogen with an FCC equilibrium catalyst is lower than 413.6 kJ/mol, indicating that the reduction reaction is more favorable when employing an FCC equilibrium catalyst.

## 4. Conclusion

In this study, a novel process called FCC-DeSO<sub>x</sub> is proposed for the treatment of SO<sub>x</sub> using an FCC riser reactor. By utilizing dry gas (rich in H<sub>2</sub>), high temperatures, and abundant hydrocarbons in the riser, complete conversion of  $SO_x$  to  $H_2S$  is achieved. The resulting H<sub>2</sub>S, along with the cracked gas, is then subjected to downstream processes to obtain sulfur products. Thermodynamic analysis revealed that the two reaction zones-dry gas prelift and upper zone of the riser—can totally convert  $SO_x$  to  $H_2S$ , in the lower zone of the riser, H<sub>2</sub>S selectivity over 99.98% and sulfur-containing coke selectivity less than 0.02%. The reaction does not affect the catalyst once it reaches thermodynamic equilibrium. However, an increase in SO<sub>x</sub> residence time in the riser may lead to the consumption of olefins in the cracked gas and the introduction of elemental sulfur into aromatic rings or coke. A comparison of the magnitudes of the thermodynamic equilibrium constants indicates that higher hydrocarbon carbon numbers and reaction temperatures promote the



Fig. 12. First-order kinetic rate constant plots of SO<sub>2</sub> reduced by H<sub>2</sub>.

#### Table 9

SO<sub>2</sub> conversion rate constants in the FCC riser zone (475–500 °C).

| Temperature, °C | Rate constants, $s^{-1}$ | Relevant index R <sup>2</sup> |
|-----------------|--------------------------|-------------------------------|
| 475             | 6.22                     | 0.987                         |
| 485             | 10.56                    | 0.999                         |
| 490             | 15.08                    | 0.995                         |
| 495             | 20.65                    | 0.996                         |
| 500             | 22.75                    | 0.997                         |



Fig. 13. Arrhenius plots for the SO<sub>2</sub> reduction.

reduction of  $SO_x$  to  $H_2S$ .

To validate the findings, a simulated experimental investigation on the dry gas reduction of SO<sub>2</sub> was carried out. The results demonstrate that with FCC equilibrium catalyst, 100% H<sub>2</sub>S yield could be obtained above 475 °C and over 2.7 s with a reducing gas of H<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> mixture or H<sub>2</sub>. H<sub>2</sub> in the dry gas plays a major role in the SO<sub>2</sub> reduction, while CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> do not improve the SO<sub>2</sub> conversion or H<sub>2</sub>S yield. For the reduction of SO<sub>2</sub> by H<sub>2</sub>, FCC equilibrium catalyst exhibits superior  $H_2S$  yield compared to fresh FCC catalyst. Process optimization further revealed an optimal  $H_2/SO_2$  molar ratio of 16 when using the FCC equilibrium catalyst. And there was no change in the specific surface area, pore volume and FCC performance of the FCC equilibrium catalysts before and after SO<sub>2</sub> reduction.

Moreover, a study was conducted to investigate the minimum reaction time required for the complete conversion of SO<sub>2</sub> to H<sub>2</sub>S under optimal H<sub>2</sub>/SO<sub>2</sub> molar ratio conditions. In the dry gas prelift zone, when the reaction temperature exceeds 600 °C, complete reduction of SO<sub>2</sub> to H<sub>2</sub>S can be achieved within 0.1 s using H<sub>2</sub>. In the riser zone, complete conversion of SO<sub>2</sub> to H<sub>2</sub>S occurs more than 0.7 s at reaction temperatures above 485 °C. Based on these observations, a kinetic model was developed for the reduction of SO<sub>2</sub> by H<sub>2</sub>, which followed first-order kinetics and had a reaction activation energy of 263 kJ/mol.

## **CRediT** authorship contribution statement

**Fa-Lu Dang:** Writing – review & editing, Writing – original draft, Formal analysis, Data curation. **Gang Wang:** Writing – review & editing, Supervision, Resources, Methodology, Funding acquisition, Conceptualization. **Jing-Cun Lian:** Formal analysis, Data curation. **Yu Yang:** Formal analysis, Data curation. **Mei-Jia Liu:** Writing – review & editing.

## **Declaration of competing interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Acknowledgements

This work is supported by General Program of National Natural Science Foundation of China (22178385).

#### References

- Abdulhamid, H., Fridell, E., Dawody, J., Skoglundh, M., 2006. In situ FTIR study of SO<sub>2</sub> interaction with Pt/BaCO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> NO<sub>x</sub> storage catalysts under lean and rich conditions. J. Catal. 241 (1), 200–210. https://doi.org/10.1016/j.jcat.2006.04.034.
- Alotaibi, F.M., González-Cortés, S., Alotibi, M.F., Xiao, T.C., Al-Megren, H., Yang, G.D., Edwards, P.P., 2018. Enhancing the production of light olefins from heavy crude oils: turning challenges into opportunities. Catal. Today 273, 86–98. https:// doi.org/10.1016/j.cattod.2018.02.018.
- Baillie, C., 2019. FCC additive technology for SO<sub>x</sub> reduction. Petrol. Technol. Q. 24 (5), 69–73.
- Bejarano, C., Jia, C.Q., Chung, K.H., 2003. Mechanistic study of the carbothermal reduction of sulfur dioxide with oil sand fluid coke. Ind. Eng. Chem. Res. 42 (16), 3731–3739. https://doi.org/10.1021/ie0206711.
- Chen, C., Weng, H., 2005. Nanosized CeO<sub>2</sub>-supported metal oxide catalysts for catalytic reduction of SO<sub>2</sub> with CO as a reducing agent. Appl Catal B-Environ Energy 55 (2), 115–122. https://doi.org/10.1016/j.apcatb.2004.08.001.
- Chen, J.W., Xu, Y.H., 2015. Catalytic Cracking Process and Engineering, vol. 3. China Petrochemical Press, Beijing, pp. 251–284 (in Chinese).
   Chen, Y.X., Li, J.G., Li, Y.J., et al., 2020. Comparative study of the flue gas desulfur-
- Chen, Y.X., Li, J.G., Li, Y.J., et al., 2020. Comparative study of the flue gas desulfurization using different–grade natural manganese oxides. Chem. Eng. Technol. 43 (2), 337–342. https://doi.org/10.1002/ceat.201900266.
- Chen, Z.H., Shang, G.J., Zhang, L., Liu, S.X., Sun, T., Fan, H.L., 2011. Formation of carbonyl sulfide in removal of hydrogen sulfide using metal oxide sorbents. Mod. Chem. Ind. 31 (S1), 244–251. https://doi.org/10.16606/j.cnki.issn0253-4320.2011.s1.074 (in Chinese).
- Cheng, W.P., Liang, X.Z., Yang, J.G., He, M.Y., 2009. Structure and properties of MgAlCuFe complex oxide for FCC desulfurization: effect of Fe and Cu contents. Chin. J. Catal. 30 (1), 31–36. https://doi.org/10.1007/s10553-009-0086-x (in Chinese).
- Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M.S., Bourane, A., 2017. Crude oil to chemicals: light olefins from crude oil. Catal. Sci. Technol. 7 (1), 12–46. https://doi.org/10.1039/c6cy01886f.
- Doumani, T.F., Deery, R.F., Bradley, W.E., 1944. Recovery of sulfur from sulfur dioxide in waste gases. Ind. Eng. Chem. 36 (4), 329–332. https://doi.org/10.1021/ ie50412a011.

- Feng, R., Al-Megren, H., Zhang, Z., Al-Kinany, M., Yan, Z.F., Zhang, Z.D., Gao, X.H., 2014. Soft-templating pathway to create nanostructured Mg-Al spinel as hightemperature absorbent for SO<sub>2</sub>. J. Porous Mater. 21 (6), 947-956. https:// doi.org/10.1007/s10934-014-9843-2.
- Feng, T., Zhao, X.O., Wang, T., Xia, X., Zhang, M.Z., Huan, Q.C., Ma, C.Y., 2016. Reduction of SO<sub>2</sub> with CO to elemental sulfur in activated carbon bed. Energy Fuel. 30 (8), 6578-6584. https://doi.org/10.1021/acs.energyfuels.6b01006.
- Gaudin, P., Dorge, S., Nouali, H., et al., 2016. CuO/SBA-15 materials synthesized by solid state grinding: influence of CuO dispersion and multicycle operation on DeSO<sub>x</sub> performances. Appl Catal B-Environ Energy 181, 379-388. https:// doi.org/10.1016/i.apcatb.2015.08.011.
- Ge, C., Yu, X.Z., Liu, M.W., Bai, L., 2023. Development status and future trend of China's sulfur industry. Mod. Chem. Ind. 43 (12), 7–10 (in Chinese).
- Ge, T.T., Zuo, C.C., Zhang, J.P., Wei, L.B., Li, C.S., 2018. Selective reduction of SO<sub>2</sub> in smelter off-gas with coal gas to sulfur over metal sulfide supported catalysts. Ind. Eng. Chem. Res. 57 (12), 4170–4179. https://doi.org/10.1021/ acs.iecr.8b00213.
- Gong, J.Y., 2020. The development of catalytic cracking catalyst industry faces six major challenges. Sinopec Monthly 10, 27–29 (in Chinese).
- Gong, W.X., 2022, Technical Question and Answer of Flue Gas Desulfurization, Dust Removal and Denitration in Catalytic Cracking, vol. 2. China Petrochemical Press, Beijing, pp. 31–89 (in Chinese)
- Hou, Y.Q., Zhang, R., Han, X.J., Huang, Z.G., Cui, Y., 2017. The mechanism of CO regeneration on V2O5/AC catalyst and sulfur recovery. Chem. Eng. J. 316, 744-750. https://doi.org/10.1016/j.cej.2017.02.020.
- Hu, D.W., Qing, Y.N., Ma, Z., H, S., 2002. Reduction of sulfur dioxide over transition metal sulfides. Chin. J. Catal. 23 (5), 425-429. https://doi.org/10.1021/ cm020635s (in Chinese).
- Hu, M., 2012. FCC flue gas emission control technology today and challenges. Sino-Global Energy 17 (5), 77–83 (in Chinese).
- Huang, S.B., 2023. Application analysis of "shape change" management cost model of sulfur industrial products. Modern Industrial Economy and Informationization 13 (6), 227-228. https://doi.org/10.16525/j.cnki.14-1362/n.2023.06.076 (in Chinese).
- Humeres, E., Moreira, R., Peruch, M., 2002. Reduction of SO<sub>2</sub> on different carbons. Carbon 40 (5), 751-760. https://doi.org/10.1016/S0008-6223(01)00193-2
- Jiang, R.Y., Shan, H.H., Li, C.Y., Nang, C.H., 2011. Preparation and characterization of Mn/MgAlFe as transfer catalyst for SO<sub>x</sub> abatement. J. Nat. Gas Chem. 20 (2), 191-197. https://doi.org/10.1016/S1003-9953(10)60171-5.
- Jiang, R.Y., Yu, S.L., Zhou, Y.D., Zhu, T., 2016. Study on the relation between the Mn/Al mixed oxides composition and performance of FCC sulfur transfer agent. Catalysts 6 (2), 20-32. https://doi.org/10.3390/catal6020020.
- Larraz, R., 2002. Influence of fractal pore structure in claus catalyst performance. Chem. Eng. J. 86 (3), 309-317. https://doi.org/10.1016/S1385-8947(01)00189-9.
- Li, B.S., Yuan, S.L., 2014. Synthesis, characterization, and evaluation of TiMgAlCu mixed oxides as novel SOx removal catalysts. Ceram. Int. 40 (8), 11559-11566. https://doi.org/10.1016/j.ceramint.2014.03.112.
- Li, D.N., 2023. Market analysis and research of sulfur industry chain in China. Techno-Economics in Petrochemicals 39 (6), 14-17 (in Chinese).
- Li, J., Zhang, L.Q., Zhao, X.Q., et al., 2021. Insights into the effect of regeneration temperature on physicochemical properties and SO2 removal over powdered activated coke. Fuel 288, 119715. https://doi.org/10.1016/j.fuel.2020.119715.
- Li, K.T., Hung, Y.C., 2003. Hydrogenation of sulfur dioxide to hydrogen sulfide over Fe/γ-Al<sub>2</sub>O<sub>3</sub> catalysts. Appl. Catal. B Environ. 40 (1), 13-20. https://doi.org/ 10.1016/s0926-3373(02)00009-7.
- Li, P., 2017. Study on desulfurization and denitrificiation of FCC flue gas. Master, East China University of Science and Technology 2-3 (in Chinese).
- Li, X.K., Han, J.R., Liu, Y., Dou, Z.H., Zhang, T., 2022. Summary of research progress on industrial flue gas desulfurization technology. Sep. Purif. Technol. 281, 119849-119870. https://doi.org/10.1016/j.seppur.2021.119849.
- Li, Z.L., Zhou, L.S., Wei, Y.H., Peng, H.L., Huang, K., 2020. Highly efficient, reversible, and selective absorption of SO2 in 1-ethyl-3-methylimidazolium chloride plus Imidazole deep eutectic solvents. Ind. Eng. Chem. Res. 59 (30), 13696-13705. https://doi.org/10.1021/acs.iecr.0c01451.
- Liu, Y.X., Shan, Y., Wang, Y., 2020. Novel simultaneous removal technology of NO and SO<sub>2</sub> using a semi-dry microwave activation persulfate system. Environ. Sci. Technol. 54 (3), 2031–2042. https://doi.org/10.1021/acs.est.9b07221.
- Luan, H., Lin, J.Y., Xiu, G.L., Ju, F., Ling, H., 2020. Study on compositions of FCC flue gas and pollutant precursors from FCC catalysts. Chemosphere 245, 125528–125534. https://doi.org/10.1016/j.chemosphere.2019.125528
- Magnabosco, L.M., 2007. Principles of the SO<sub>x</sub> reduction technology in fluid catalytic cracking units (FCCUs). Stud. Surf. Sci. Catal. 166, 253-305. https://doi.org/ 10.1016/S0167-2991(07)80199-6.
- Miao, R., Dutta, B., 2017. Mesoporous Iron sulfide for highly efficient electrocatalytic

hydrogen evolution. J. Am. Chem. Soc. 139 (39), 13604-13607. https://doi.org/ 10.1021/jacs.7b07044

- GB 31571-32015. Ministry of Ecology and Environment of the People's Republic of China, 2015. Emission standard of pollutants for petroleum chemistry industry. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/ 201505/W020240612353987637486.pdf.
- Mirhoseini, H., Taghdiri, M., 2016. Extractive oxidation desulfurization of sulfurcontaining model fuel using hexamine-phosphotungstate hybrid as effective heterogeneous 167, 60–67. catalvst. Fuel https://doi.org/10.1016/ j.fuel.2015.11.042.
- Mousavi, S.E., Pahlavanzadeh, H., Khani, M., Ebrahim, H.A., Mozaffari, A., 2018, Selective catalytic reduction of SO<sub>2</sub> with methane for recovery of elemental sulfur over nickel-alumina catalysts. React. Kinet. Mech. Catal. 124 (2), 669-682. https://doi.org/10.1007/s11144-018-1360-x.
- Nie, Y.X., Li, S., Dai, J.F., He, D.D., Mei, Y., 2020. Catalytic effect of Mn<sup>2+</sup>, Fe<sup>3+</sup> and Mg<sup>2+</sup> ions on desulfurization using phosphate rock slurry as absorbent. Chem. Eng. J. 390, 124568–124578. https://doi.org/10.1016/j.ccj.2020.124568. Oloruntoba, A., Zhang, Y., Hsu, C.S., 2022. State-of-the-Art review of fluid catalytic
- cracking (FCC) catalyst regeneration intensification technologies. Energies 15 (6), 2061. https://doi.org/10.3390/en15062061.
- Olson, D.G., Tsuji, K., Shiraishi, I., 2000. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process. Fuel Process. Technol. 65, 393-405. https://doi.org/10.1016/S0378-3820(99)00106-X
- Polato, C., Henriques, C., Rodrigues, A., Monteiro, J., 2008. De-SO<sub>x</sub> additives based on mixed oxides derived from Mg,Al-hydrotalcite-like compounds containing Fe, Cu, Co or Cr. Catal. Today 133-135, 534-540. https://doi.org/10.1016/ i.cattod.2007.12.046.
- Polato, C.M.S., Henriques, C.A., Neto, A.A., Monteiro, J.L.F., 2005. Synthesis, characterization and evaluation of CeO2/Mg,Al-mixed oxides as catalysts for SOx removal. J. Mol. Catal. Chem. 241 (1-2), 184-193. https://doi.org/10.1016/ i.molcata.2005.07.006
- Stratiev, D., Ivanov, M., Chavdarov, L., Argirov, G., Strovegli, G., 2023. Revamping fluid catalytic cracking unit, and optimizing catalyst to process heavier feeds. Appl. Sci. 13 (3), 2017. https://doi.org/10.3390/app13032017.
- Wang, C.L., Xie, Z.Z., Zhao, Y., Zhao, X.G., Wang, L.X., Ren, X., 2019. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals. Pet. Process. Petrochem. 50 (2), 50-56 (in Chinese).
- Wang, G., 2006. Studies on the Reaction Behavior of Residuum Catalytic Cracking with High Temperature and Short Contact Time. Doctor. China University of Petroleum, Beijing, pp. 86–106 (in Chinese). Wang, L.Y., Zhang, Y.J., Liu, Y., Xie, H.L., Xu, Y.L., Wei, J.P., 2020. SO<sub>2</sub> absorption in
- pure ionic liquids: solubility and functionalization. J. Hazard Mater. 392, 122504-122522. https://doi.org/10.1016/j.jhazmat.2020.122504.
- Wu, C., 2021. Research on emission characteristics of flue gas pollutants from typical FCC units. Doctor, East China University of Science and Technology 1-8 (in Chinese).
- Xia, H., Liu, B.S., Li, Q., Huang, Z.B., Cheung, A.S.C., 2017. High capacity Mn-Fe-Mo/ FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation. Appl. Catal. B Environ. 200, 552-565. https://doi.org/10.1016/ j.apcatb.2016.07.053.
- Xu, Y.H., Zuo, Y.F., Bai, X.H., Du, L.Y., Han, Y.Y., 2021. Development background, development idea and conceptual design of fcc process for targeted cracking to light olefins. Petroleum processing and petrochemical 52 (8), 1-11 (in Chinese).
- Yang, M., Wang, G., Han, J.N., Gao, C.D., Gao, J.S., 2023. Fischer-Tropsch wax catalytic cracking for the production of low olefin and high octane number gasoline: process optimization and heat effect calculation. Petrol. Sci. 20 (2), 1255-1265. https://doi.org/10.1016/j.petsci.2022.08.019.
- Yi, H.H., Ma, C.B., 2019. Synthesis of MgO@CeO2-MnOx core shell structural adsorbent and its application in reducing the competitive adsorption of  $SO_2$  and  $NO_x$ in coal-fired flue gas. Chem. Eng. J. 372, 129-140. https://doi.org/10.1016/ i.cei.2019.04.120.
- Zawadzki, J., Wisniewski, M., 2007. An infrared study of the behavior of SO2 and NOx over carbon and carbon-supported catalysts. Catal. Today 119 (1-4), 213-218. https://doi.org/10.1016/j.cattod.2006.08.037
- Zhang, L.Z., Qin, Y.H., Chen, B.Z., Peng, Y.G., He, H.B., Yuan, Y., 2016. Catalytic reduction of SO<sub>2</sub> by CO over CeO<sub>2</sub>-TiO<sub>2</sub> mixed oxides. T Nonferr Metal Soc 26 (11), 2960-2965. https://doi.org/10.1016/s1003-6326(16)64426-6.
- Zhao, H.L., Ji, L.J., Zhang, X.J., 2022. Technological progress and market analysis of refined sulfuric acid in China. Sulphuric Acid Industry 9, 7–9 (in Chinese).
- Zhou, Y.H., 2020. The development and application of sulfur and its deep processing products before the market. Petrochemical Industry Technology 27 (10), . 199–262 (in Chinese).

Petroleum Science 22 (2025) 909-924