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a b s t r a c t

In the area of reservoir engineering, the optimization of oil and gas production is a complex task
involving a myriad of interconnected decision variables shaping the production system's infrastructure.
Traditionally, this optimization process was centered on a single objective, such as net present value,
return on investment, cumulative oil production, or cumulative water production. However, the inherent
complexity of reservoir exploration necessitates a departure from this single-objective approach. Mul-
tiple conflicting production and economic indicators must now be considered to enable more precise and
robust decision-making. In response to this challenge, researchers have embarked on a journey to
explore field development optimization of multiple conflicting criteria, employing the formidable tools of
multi-objective optimization algorithms. These algorithms delve into the intricate terrain of production
strategy design, seeking to strike a delicate balance between the often-contrasting objectives. Over the
years, a plethora of these algorithms have emerged, ranging from a priori methods to a posteriori
approach, each offering unique insights and capabilities. This survey endeavors to encapsulate, catego-
rize, and scrutinize these invaluable contributions to field development optimization, which grapple
with the complexities of multiple conflicting objective functions. Beyond the overview of existing
methodologies, we delve into the persisting challenges faced by researchers and practitioners alike.
Notably, the application of multi-objective optimization techniques to production optimization is hin-
dered by the resource-intensive nature of reservoir simulation, especially when confronted with
inherent uncertainties. As a result of this survey, emerging opportunities have been identified that will
serve as catalysts for pivotal research endeavors in the future. As intelligent and more efficient algo-
rithms continue to evolve, the potential for addressing hitherto insurmountable field development
optimization obstacles becomes increasingly viable. This discussion on future prospects aims to inspire
critical research, guiding the way toward innovative solutions in the ever-evolving landscape of oil and
gas production optimization.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In modern society, despite technological advancements, the
heavy reliance on scarce and finite fossil fuels like oil and gas
persists as the predominant energy source. As the world's demand
for petroleum keeps growing, global petroleum reserves are
depleting due to continuous exploitation. Consequently, the oil-gas
amian).

y Elsevier B.V. on behalf of KeAi Co
production industry is grappling with multiple challenges, such as
increasing water content, low efficiency, and rising costs, which
lead to the waste of resources and environmental pollution (Cordes
et al., 2016). The oil industry's sustainable development has been
negatively impacted by challenges such as reduced investment
incentives due to high oil prices, emphasizing the importance of
adopting advanced methods to improve margins considering un-
stable prices (Silva et al., 2015). Hence, optimization technologies
have become vital in oil and gas production to improve productivity
and reduce energy consumption (Morales et al., 2011; Nasir et al.,
2022).
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Field development faces the challenge of conflicting objectives
that need to be optimized for consistent, accurate, and low-risk
exploration. Traditionally, single-objective optimization algo-
rithms have only considered economic gain (Rosenwald and Green,
1974). However, research shows that complex problems, like pro-
duction optimization, require model-based optimization with
multiple objectives. For instance, some research has shown that
including environmental-related objective functions (e.g., CO2
emission, voidage-replacement ratio, or cumulative water pro-
duction) in the optimization procedure is crucial for a more sus-
tainable and environmental-friendly exploration (Khan et al., 2013;
Awotunde and Sibaweihi, 2014; You et al., 2019; Sun et al., 2021;
Tom et al., 2024). In the face of this challenge, researchers have
been investigating the application of multi-objective algorithms for
model-based life-cycle production optimization under multiple,
conflicting objectives. In the petroleum engineering literature,
many multi-objective optimization implementations and applica-
tions have been published (Schulze-Riegert et al., 2007; Ferraro and
Verga, 2009; Hajizadeh et al., 2011; Mohamed et al., 2011; Lu et al.,
2013, 2017; Liu and Reynolds, 2014, 2015, 2016a, 2016b; Park et al.,
2015; Hutahaean et al., 2017a, 2017b). Recently, there has been
significant attention towards employing multi-objective algo-
rithms for production optimization in field development problems.

Multi-objective optimization problems are complex due to the
absence of a single, global optimum strategy. Instead, multi-
objective optimization problems require the identification of a set
of optimal strategies that represent the trade-offs between con-
flicting objective functions, known as Pareto front (Coello et al.,
2007). The search space exploration for multi-objective optimiza-
tion problems often requires a higher number of reservoir simu-
lations, which increases computational cost and time for
optimization. Although multi-objective optimization problems can
be impractical for direct use in production optimization, recent
advances in multi-objective optimization methods have improved
optimization while reducing computational costs. These novel
techniques have not been implemented in the context of field
development and could be further explored to promote faster and
more reliable optimization. Therefore, since the development of
multi-objective algorithms that is designed specifically for pro-
duction optimization and their complex nature is a major concern
for the petroleum industry and scientists in the field, this survey
aims to enumerate, classify, and analyze the existing contributions
of multi-objective algorithms for production optimization. We also
identify and outline open opportunities that may be vital in the
development of suitable methods for practical, real-world appli-
cations in the future.

The remaining of this paper is organized as follows. Section 2
introduces production optimization and reservoir management.
Section 3 presents the basic concepts of multi-objective production
optimization. Section 4 reviews existing methods. Section 5 dis-
cusses open challenges. Section 6 discusses the future direction.
Finally, Section 7 concludes this work.

2. Production optimization field development and reservoir
management problem

This section introduces field development and management,
life-cycle optimization, uncertainty handling, and the categoriza-
tion of decision variables and objective functions for multi-
objective production optimization.

2.1. General introduction to closed-loop field development and
management

In field development and management, optimizing the
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production strategy is critical to maximize the profitability and
productivity of the field (Rostamian et al., 2019b). The closed-loop
field development (CLFD) approach is a coordinated, multidisci-
plinary approach to utilizing newly acquired information iteratively
during field development to optimize production strategy. CLFD
involves three steps: optimizing the field-development plan based
on diverse sources of knowledge, drilling new wells and acquiring
diverse types of data, and updating multiple representative
geological models supported by accessible information. By imple-
menting an optimization tool, new wells are optimized in terms of
number, type, location, and controls (Shirangi and Durlofsky, 2015;
Shirangi, 2019).

To develop a general methodology that incorporates field
development and reservoir management, the closed-loop reservoir
management (CLRM) approach has been proposed. CLRM is a
closed-loop feedback process that uses updated data to adjust
reservoir management decisions continuously (Jansen et al., 2009).
Based on CLRM, the closed-loop field development and manage-
ment (CLFDM) approach is proposed, which is an innovative field
management and development method that involves updating
existing field models periodically and optimizing production to
maximize the value of the field economically (Schiozer et al., 2019).
Fig. 1 illustrates the CLFDM. The significant stages of the workflow
are categorized by color. Green represents data collection, evalua-
tion of uncertainty, and model development. Blue shows the
implementation of models to make long-term decisions under
uncertainty. Red indicates data assimilation, which directly affects
simulation models or high-fidelity geologic models to select
models used in the blue section. Black demonstrates short-term
production optimization and production strategy selection
(Schiozer et al., 2019).

It must be mentioned that optimization of the production
strategy is the main challenge in the blue part of the methodology
developed by Schiozer et al. (2019). Further details can be found in
(Schiozer et al. 2015, 2019).
2.2. Uncertainty handling

Production strategy optimization can be done using a single
model with nominal optimization, which maximizes or minimizes
an objective function. However, this approach does not consider
uncertainty and may lead to poor performance in different situa-
tions. Alternatively, robust optimization involves optimization over
an ensemble of models to find strategies that are less sensitive to
model variability. This approach evaluates each strategy in multiple
models but comes with a higher computational cost and decision
analysis time (Yeten et al., 2004; van Essen et al., 2009b; Fonseca
et al., 2014a, 2014b; Siraj et al., 2015; Yasari and Pishvaie, 2015;
Fu and Wen, 2017a, 2017b; Lu and Reynolds, 2019, 2020; Mirzaei-
Paiaman et al., 2021; Nguyen et al., 2023a; Davari et al., 2024).
2.3. Duration of field development optimization

The duration of field development optimization can be long or
short-term. Long-term or life-cycle optimization aims to maximize
the net present value (NPV) of production over the entire lifespan of
the field, which can be enhanced by integrating robust optimiza-
tion and risk minimization. Short-term optimization, on the other
hand, focuses on maximizing revenue in the near term and is often
neglected in studies on life-cycle performance. However, due to
uncertainties, short-term objectives often determine the opera-
tional strategy and integrating them into life-cycle optimization is
crucial for closed-loop reservoir management (Chen et al., 2012;
Yasari et al., 2013; Zhao et al., 2019; Santos et al., 2021).



Fig. 1. Closed-loop field development and management (CLFDM). Source: (Schiozer et al., 2019).
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2.4. Decision variables

Decision variables are used in production optimization to
maximize or minimize objective functions. Decision-making con-
cerning decision variables relies on aspects such as project nature,
geographical setting, recovery mechanisms, and well completion
types. The optimization variables may be classified into three
groups: Group 1 (design variables), Group 2 (operational variables),
and Group 3 (future variables). Design variables require significant
investment and include recovery method, well type, number of
wells, well pattern, and well location. Operational variables mea-
sure the system and include control valve choke at various levels.
Future variables determine potential future scenarios and include
activities such as infill drilling, recompletion, and well conversions
(Barreto and Schiozer, 2015; Barreto et al., 2016; Gaspar et al., 2016).

2.5. Objective functions

In the production strategy optimization problem, objective
functions evaluate the efficiency of a solution. Objective functions
are computable functions of decision variables, which may be
commensurable or non-commensurable (Coello et al., 2007). There
are several objective functions in petroleum production strategy
optimization, including economic-based functions such as NPV,
risk, and return over investment, as well as field response-related
functions such as water production, oil production, gas produc-
tion, water breakthrough time, and recovery factor. Objective
functions related to the field's injection process, such as water in-
jection, gas injection, and polymer injection, can also be consid-
ered. The statistical manipulation of each objective function can be
assumed as a predefined objective function in the context of un-
certainty reduction, such as standard deviation, variance, and
average. Short-term objectives and long-term strategies are often
conflicting, making it important to balance nominal and robust
objective functions (van Essen et al., 2009a; Chen et al., 2012;
Murphy, 2014; Pearce, 2016; Schiozer et al., 2017; Santos et al., 2017,
2021; Rostamian et al., 2024). Fig. 2 shows how the objective
functions are categorized based on their types in accordance with
what has already been explained.

3. Multi-objective production optimization

Multi-objective production optimization problems are the ones
containing multiple objectives that must considered simulta-
neously. The general definition of multi-objective optimization is as
follows:
510
Assume that f1ðxÞ; f2ðxÞ; ::::; fkðxÞ is the k objective functions that
need to be minimized or maximized and x ¼ ðx1; x2; :::; xnÞ repre-
sent the vector of decision variables. There are two types of con-
straints: equality constraints giðxÞ ¼ 0 and inequality constraints
hjðxÞ � 0. The formulation can be expressed as below in Eq. (1):

Maximize=Minimize : FðxÞ ¼ ðf1ðxÞ; f2ðxÞ;…:; fkðxÞ Þ

Subject to : giðxÞ ¼ 0; i ¼ 1;2;…;m

hjðxÞ � 0; j ¼ 1;2;…; p (1)

x2U

where U is a feasible region defined by the constraints.
Multi-objective production optimization problem is subject to

conflicting objective functions, that is, it becomes impossible to
improve one objective function without decreasing the other.
Therefore, in multi-objective optimization problems, there is not
only a single optimal strategy, but several optimal strategies that
represents the trade-offs between the objectives. The set of optimal
strategies is called the Pareto set. The concept of Pareto optimality
is described below, according to (Coello et al., 2007).

Definition 1. (Pareto optimality) A production strategy x/ is a
Pareto optimal solution of the feasible region U if and only if (iff)
there is no other production strategy y/ 2 U where F (y/)
dominates F (x/).

As can be seen, to identify which strategy is better than another
in a multi-objective production optimization problem, they must
be evaluated using the concept of Pareto dominance, detailed
below.

Definition 2. (Pareto dominance) Given two production strate-
gies x/ 2 U and y/ 2 U, x/ dominates y/ if x/ is no worse
than y/ in all objectives and x/ is strictly better than y/ in at
least one objective, that is, supposing a minimization problem (Eq.
(2)):

x!3 y!⇔ cm2 f1;…;Mg; fm
�
x!� � fm

�
y!�

di 2 {1, …, M}:

fi(x/) < fi(y/) (2)



Fig. 2. Objective functions classification.
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The Pareto set is composed of the optimal strategies within the
entire feasible region. These strategies are not dominated by any
other feasible strategy, as defined below.

Definition 3. (Pareto set) A Pareto optimal set is defined as (Eq.
(3)):

Pareto set ¼ �
x!2U

��:d y!2U F
�
y!�

3F ðx /Þ� (3)

To facilitate further analysis, it is common to generate the Pareto
front. The Pareto front represents the set of points from the Pareto
set displayed in the objective space. The formal definition of the
Pareto front is presented below.

Definition 4. (Pareto front) Given a Pareto optimal set, the Pareto
front is defined as (Eq. (4)):
Pareto front ¼ {F (x/) jx/ 2 P S} (4)

Here, it is important to distinguish that a multi-objective pro-
duction optimization problem operates in two different spaces: the
decision and the objective space. Fig. 3 explains both spaces.
4. Multi-objective production optimization in field
development optimization

Despite their widespread use in other engineering fields,
Fig. 3. A hypothetical bi-objective problem to illustrate the two different spaces in a multi-
two decision variables x1 and x2. All possible values for x1 and x2 compose the feasible de
objective function values is plotted into the feasible objective space (right). Feasible region
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petroleum engineering problems remain largely untapped by
multi-objective optimization approaches. Fig. 4 shows the number
of publications per year about multi-objective production optimi-
zation problems. As can be seen, the interest of the research com-
munity has grown considerably in the past decade. Please note that
these papers were obtained through different scientific databases
to which the authors had accessed, including Web of Science, IEEE
Xplore, Science Direct, SpringerLink, Scopus, and OnePetro. In
addition, the search range is from 1980 to 2024. Papers outside of
this scope could not be obtained and, therefore, were not consid-
ered for this review.
objective production optimization. Here, each production strategy x/i is composed of
cision space (left). Each production strategy x/ is evaluated, and their specific set of
s are shaded in grey. Source: created by the authors.

Fig. 4. Publications per year about multi-objective production optimization problem.
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The research literature for multi-objective production optimi-
zation problem has been done considering twomain approaches, as
shown in Fig. 5: a priori, where single-objective methods are
employed in a hierarchical approach or using a linear combination
of functions (simultaneously), and a posteriori, where Pareto-based
algorithms are employed. Fig. 6 shows the percentage of papers for
each category. In this section, multi-objective optimization studies
in the field development and management are reviewed consid-
ering the mentioned approaches.
Fig. 6. Percentage of papers of each category.
4.1. A priori methods

A priori methods require that predefined components be
defined before the optimization takes place. The two main ap-
proaches for this are priori-simultaneously, which forms a linear
combination of functions (weighted sum), and priori-hierarchical,
where the primary and secondary functions are predefined, and
the secondary functions are optimized considering constraints with
a certain degree of allowable changes in the primary functions.
These approaches are detailed in the next subsections.
4.1.1. Priori-simultaneously
The necessity for handling many objectives in petroleum engi-

neering has been emphasized since 1990s. The study of Harrison
and Tweedie (1981) was among the first research in the area of
field development with multiple objectives. Using an analytical
approach, they incorporate linear combination of conflicting
criteria with predetermined importance to select the most effective
production policy.

Since then, many other works considered the same linearization
approach, for instance, to maximize oil recovery and minimize in-
vestments (Xiao et al., 1998), maximize both production and NPV
(Rahman et al., 2001), maximize minimum or mean NPV while
minimizing NPV variance over an ensemble of geological re-
alizations (Bailey et al., 2005; Capolei et al., 2015; Liu and Reynolds,
2014, 2015, 2016a, 2016b; Lu et al., 2017), minimizing water in-
jection while maximizing oil production in water flooding plans
(Cardoso, 2009), maximizing short-term oil rates and long-term
recovery (Khan et al., 2013), maximize both short and long-term
NPV (Hasan et al., 2013), maximizing NPV and minimizing risk
(Isebor et al., 2014a, 2014b), maximizing NPV while minimizing
voidage replacement ratio (Awotunde and Sibaweihi, 2014), mini-
mize water cut while also minimizing gas production (Hanea et al.,
2019), maximizing return over the investment and minimizing risk
(Christiansen et al., 2016), maximizing both short and long-term
NPV (Christiansen et al., 2017), undiscounted and highly dis-
counted NPV (Fonseca et al., 2016), or by applying other combina-
tions or statistic-based functions based on these mentioned
objective functions (Siraj et al., 2016; Pinto et al., 2019; Wang et al.,
Fig. 5. Approaches to handle multi-objective production optimization problem.
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2021c, 2022b; Alpak et al., 2022).
Priori-simultaneously approach has the advantage of combining

multiple functions into a single linear combination, which allows
the application of single-objective optimization algorithms. The
main concern when using this approach is that aggregation func-
tions approaches have difficulties in finding a well-distributed set
of solutions over non-convex Pareto front (Das and Dennis, 1997).
In addition, they also require extensive studies to identify the
optimal weights for a given problem, which can be considered an
additional source of uncertainty.
4.1.2. Priori-hierarchical
In hierarchical optimization, the optimization of secondary ob-

jectives is bounded by a threshold of allowed change in the primary
objectives (Fonseca et al., 2014b). The study by van Essen et al.
(2009a) indicates that optimizing production over the long term
can be a challenging problem with no clear and unique solution;
more degrees of freedom in the control variables could still be an
issue. Using additional degrees of freedom in the estimation of
control variables, van Essen et al. (2009a) proposed a hierarchical
approach to this issue. According to van Essen et al. (2011), their
previous method was theoretically robust but computationally
problematic for real-world-sized problems because it depends on
determining the objective's Hessianmatrix. Therefore, they devised
an alternative approach that prioritizes the optimization of primary
and secondary objective functions in an alternating order. As part of
the second method, gradient information is used to prove the ex-
istence of a redundant degree of freedom regarding a life-cycle
objective function. They argued that rather than using gradient-
based optimization methods to tackle hierarchical optimization
problems, alternative optimization methods (e.g., genetic algo-
rithms) are possible.

Also, Chen et al. (2011, 2012) reported that the methodology of
van Essen et al. (2009a) involved the determination of the Hessian
matrix is a computationally demanding process. Consequently,
they introduced a two-stage production optimization workflow.
The first stage involved addressing the life-cycle constrained opti-
mization problem, while the second stage focused on optimizing
the short-term NPV under the imposed constraint. To incorporate
the long-term NPV constraint along with the physical constraints
into the short-term optimization, they employed the augmented
Lagrangian method.
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Fonseca et al. (2014a, 2014b) developed a robust gradient
formulation as a modification of the hierarchical optimization
workflow which improved the computational efficiency and
examined the effectiveness of ensemble optimization (EnOpt) for
robust multi-objective optimization on a hypothetical test case.
They found that EnOpt is a computationally superior approach
when the adjoint is inaccessible, in particular for robust optimiza-
tion. Later, Fonseca et al. (2015) consider the same approach for the
on-and-off inflow-control devices problem. They employ a
switching-time reparameterization to address the limitation of
gradient-based techniques in effectively handling discrete control
problems.

The study conducted by Siraj et al. (2016, 2017) explored an
optimal life cycle optimization solution that aimed to strike a bal-
ance between short and long-term gains. Additionally, the solution
aimed to ensure the robustness of economic and geological un-
certainties, particularly in relation to the predicted NPV. The au-
thors use the work of van Essen et al. (2011) and Fonseca et al.
(2014a, 2014b) as a base example. They claimed that compared to
multi-objective optimization, the weighted sum approach de-
creases the impacts of uncertainty when implemented with mean-
variance optimization objectives. Zhao et al. (2019) developed the
augmented Lagrangian function to address the optimization of
short and long-term NPVs while considering both linear and
nonlinear constraints. This study uses two unique versions of the
general stochastic approximation (GSA) algorithm: simultaneous
perturbation stochastic approximation (SPSA) and EnOpt.

Nguyen et al. (2022) optimize CO2 storage and recovery in a
depleted oil reservoir using a stochastic gradient-based framework.
The study employs line-search sequential quadratic programming
(LS-SQP) with stochastic simplex approximated gradients (StoSAG)
to maximize both net present value (NPV) and net present carbon
tax credits (NPCTC), demonstrating computational efficiency and
effectiveness in handling nonlinear constraints and estimating the
Pareto front. Nguyen et al. (2023b) explore carbon capture, utili-
zation, and storage (CCUS) in a CO2-enhanced oil recovery process,
focusing on maximizing NPV and NPCTC while respecting injection
bottom hole pressure (IBHP) constraints. The study uses a lexico-
graphic method based on LS-SQP with StoSAG, showing computa-
tional efficiency and highlighting the benefits of bi-objective over
single-objective optimization. Nguyen et al. (2023c) continue this
research on optimizing CCUS in CO2-enhanced oil recovery, using
LS-SQP with StoSAG to maximize NPV and NPCTC. The study
effectively handles constraints, achieves a 13.8% increase in NPCTC
with minimal NPV trade-off, and constructs a Pareto front to
illustrate the trade-offs between objectives. Several studies have
explored the application of multi-objective StoSAG optimization
within the context of field development, highlighting its effec-
tiveness in balancing competing objectives. By employing StoSAG
optimization, these studies demonstrate how advanced computa-
tional techniques can significantly enhance strategic planning and
operational decisions in complex field development scenarios
(Fonseca et al., 2015, 2016; Lu et al., 2017, 2023; Liu and Reynolds,
2021; Nguyen et al., 2022, 2023a, 2023b).

Although common in the petroleum industry, the hierarchical
approach has its own drawbacks. Single-objective methods lack the
capability to identify multiple strategies in a single run, and even
after multiple executions, there is no assurance of obtaining an
evenly distributed set of strategies (Schulze-Riegert et al., 2007).
Besides, single-objective methods may perform poorly in complex
Pareto front geometries such as in non-convex, discontinuous, and
non-smooth fronts. Finally, they often require a manual labor of
constrained definition throughout the independent executions.
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4.2. A posteriori methods

The a posteriori method allows decision-makers (DMs) to
examine the performance of a problem and select one of the so-
lutions that best meet their objectives. Over the past decade, meta-
heuristics became a hot research topic for solving a posteriori
multi-objective production optimization as they are able to pro-
duce high-quality solutions. Meta-heuristics simplicity has made
them widely studied in petroleum engineering research problems.
The purpose of this section is to elaborate on the application of this
type of multi-objective approach to production optimization
problems.

Ray and Sarker (2006), as one of the earliest Pareto-basedmulti-
objective optimization studies, applied the Non-dominated sorting
genetic algorithm II (NSGA-II) to the gas-lift problem with the goal
of minimizing injected gas and maximizing produced oil in gas lift
operation. Later, based on the multi-objective genetic algorithm
(MOGA), Min et al. (2011) proposed a numerical scheme to opti-
mize the number of injectors and their location in a water-flooding
project where some producers are already present. Maximizing
revenue and minimizing capital expenditures (CAPEX) and oper-
ating expenditures (OPEX) are the two main objectives imple-
mented in their study.

Yasari et al. (2013) optimized well controls involving objective
functions that maximize or minimize components of NPV. The
optimization was performed with NSGA-II. Later, Yasari and
Pishvaie (2015) presented a formulation to find robust water in-
jection policies in a field development problem. In a study by Chang
et al. (2015a, 2015b), the mean-variance approach was applied to
estimate well placement based on geological uncertainties using
NSGA-II. They demonstrated that oil in place is an essential indi-
cator for well placement and that quality map-assisted NSGA-II
(QM-NSGA-II) can be significantly beneficial for optimizing well
placement.

Plaksina and Gildin (2015) developed a method for shale gas
reservoir development optimization to reduce development risks
while maximizing economic gains. Their research was conducted
on hydraulic fracturing optimization of shale gas wells using NSGA-
II. Safarzadeh et al. (2015) used a genetic algorithm in conjunction
with the streamlined simulation approach to enhance the injection
efficiency. Compared to traditional techniques such as weighted
sums, the proposed methodology resulted in increased oil pro-
duction, reduced water cuts, and lower water loss to aquifers.

A study by Bagherinezhad et al. (2017) explored the potential for
optimizing the oil well placement and control of wells in naturally
fractured reservoirs. They proposed an optimization framework
based on NSGA-II and applied it for well placement and control
problems to maximize cumulative oil production and water
breakthrough time. Using uncertain multi-objective programming
models, Ji et al. (2017) formulate an optimization problem for the
oilfield development plan by considering uncertain geological,
technical, and economic factors. Concerning oil production and
resource limitations, it minimizes expected development costs
whilemaximizing anticipated new recoverable reserves. Rostamian
(2017) implemented a modified NSGA-II to optimize the NPV and
recovery factor in a synthesizedmodel considering the type of well,
the number of wells, and the location of the well as the decision
variables. He demonstrated that decisions-making variables have a
significant impact on the nature of optimization problems.

Rostamian et al. (2019a, 2019b) utilized similarity-based and
non-dominated ranked genetic algorithms (NRGAs) to address the
water flooding multi-objective optimization problem. Their articles
claimed to have fully generated a Pareto front, which offers several
production strategies for optimizing field development. Moradi and
Rasaei (2017) presented a model of automated reservoir



A. Rostamian, M.B. de Moraes, D.J. Schiozer et al. Petroleum Science 22 (2025) 508e526
management, which incorporated the situation awareness tech-
nique as a method that was able to define multi-objective optimi-
zation problems regarding reservoir dynamic situations pertaining
to economic, technical, and operational managerial targets. The
multi-objective algorithm employed in this study was NSGA-II.

Fu and Wen (2017a, 2017b) developed a framework to appro-
priately select a solution for field development problems that could
efficiently deal with different multi-objective optimization issues. As
an example, the adjoint-based method, MOGA, multi-objective par-
ticle swarm optimization (MOPSO), and their hybridization at mul-
tiple scales are included. Later, Fu and Wen (2018) compared multi-
objective optimization solutions to a conventional single-objective
solution. According to their study, multi-objective optimization is
capable of offering a plan to balance oil and water production.
However, the weighted sum strategy used in single objective opti-
mization is less rigorous and combines multiple metrics. Camara
et al. (2018) performed an examination of three different multi-
objective optimization algorithms, namely NSGA-II, the greedy ran-
domized adaptive search procedure, and the 3-Constraint method.
According to their study, the objective function was the maximiza-
tion of oil production while minimizing costs and environmental
damage. As a result of their research, they found that the NSGA-II
method had a lower computational cost than other methods.

Hutahaean et al. (2019) developed a well placement optimiza-
tion framework under uncertainty in a Bayesian framework. The
workflow selects Pareto models based on a clustering algorithm
from a set of history-matched models designed to capture
geological uncertainty. The optimal solutions are selected based on
a probabilistic risk analysis of the selected models using MOPSO.
The surrogate-assisted reference vector evolutionary algorithm
principal component analysis method (SA-RVEA-PCA) proposed by
Zhao et al. (2020a, 2020b) is designed to solve robust (ensemble-
based) production optimization problems. It is based on the
decomposition-based algorithm called the reference vector evolu-
tionary algorithm (Cheng et al., 2016). It employs the Gaussian
process (also known as Kriging) surrogate model to replace the
computationally expensive reservoir simulations and PCA to reduce
the dimensionality of the original problem.

Wang et al. (2021a, 2021b, 2022a) developed three methods for
well control optimization using NSGA-II and proxymodels. The aim
was to increase cumulative oil production and revenue. Support
vector regression, tri-training surrogate-assisted, and self-adaptive
multi-fidelity surrogate-assisted models were conducted in their
study.

Liu et al. (2021) developed an error compensation model of the
oil-gas production process for optimizing three indicators: oil
production, water production, and energy consumption per ton of
oil. Furthermore, to improve the performance of solutions, an
improvedNSGA-II withmulti-strategy improvement (IMS-NSGA-II)
was proposed to solve the error compensation of the original model
(Liu et al., 2021). Based on a field case study, Zhang et al. (2021)
developed a method that optimizes inflow control device config-
urations in horizontal wells by considering water and sand control
factors. Based on the proposed method, NSGA-II was utilized as the
optimizer, and water breakthrough time and production rate were
considered optimization objectives. Based on their findings, the
NSGA-II can play a significant role in water and sand control in
horizontal wells.

The study by Yan et al. (2021) uses a robust optimization
approach to solve long-term strategic decision-planning problems
under uncertainty. To reduce costs and enhance sustainable
development, the authors construct a multi-objective, multistage,
robust integer optimization model with NSGA-II. A study by Al-
Aghbari et al. (2021) used the NSGA-II algorithm to investigate
distinct functions for the short and long-term management of
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flooding in the Brugge field. According to their studies, cumulative
oil production, water cut, cumulative water production, and NPV
are the main objectives. In a follow-up study, Al-Aghbari et al.
(2022a, 2022b), used the same methodology. However, instead of
using a reservoir simulator, they applied a proxy model, an evolu-
tionary neural network, to model the reservoir.

Farahi et al. (2021a) appliedMOPSO to address water flooding in
a synthetic reservoir under geological uncertainty. For the conser-
vative production plan, they maximized short and long-term NPV
simultaneously. In their study, k-means clustering is implemented
to reduce realizations, reducing computational costs. In another
study, the authors used MOPSO and NSGA-II methods to simulta-
neously identify short and long-term strategies in water-flooded
reservoirs (Farahi et al., 2021b). In their study, modifications have
been made to the algorithms to address the imperfect Pareto front
obtained for multi-objective optimization problems. They stated
that based on a comparison of various methods, MOPSO provided a
more appropriate production strategy for optimizing short term
and long term NPV in both cases than NSGA-II did. Later, Farahi
et al. (2022) applied the same methodology (MOPSO) for the
reservoir with a gas condensate problem.

The work by de Moraes and Coelho (2022a) proposes a combi-
nation of multi-Objective evolutionary algorithm based on
decomposition and novel-first tabu search (MOEA/D-NFTS), a di-
versity preservation-guided method that employs local search
methods with knowledge incorporation to avoid duplicated stra-
tegies in production optimization problems with discrete decision
variables. The authors compared the proposed design with a
baseline algorithm (MOEA/D) in a well placement optimization
problem using the UNISIM-I-D benchmark case, considering the
maximization of cumulative oil production and minimization of
cumulative water production as the objective functions. They
showed that incorporating diversity preservation mechanisms
produces statistically significant superior results in comparison to
optimization without diversity preservation in production optimi-
zation with discrete decision variables.

4.2.1. Advantages and disadvantages of current a posteriori
methods

A posteriori multi-objective production optimization has been
performed mainly considering four algorithms: NSGA-II, MOPSO,
RVEA, and MOEA/D-NFTS. Table 1 presents a summary of the ad-
vantages and disadvantages of these methods. NSGA-II has a very
simple structure and easy implementation, can be used for both
continuous and discrete variables by applying specific genetic op-
erators, and is known to have a fast convergence (Deb et al., 2002);
crowding distance guarantees diversity in the objective space, it
achieves good results in many regular and irregular Pareto front
geometries and can be easily adapted to different mating schemes,
which may improve even further its performance. As for disad-
vantages, NSGA-II is not scalable to many objective problems; it is
highly sensitive to the initial population (Poles et al., 2009);
crowding distance does not guarantee diversity in the decision
space (as only the objective functions values are used for density
estimation); and it is unsuitable for user preference articulation in
its original form, as there is no way to predetermine a region that
the DMs want to be explored.

MOPSO has a fast convergence, a simple structure, and is less
sensitive to the initial population than NSGA-II. As for drawbacks, it
has a high risk of falling into local optima (Li et al., 2021; Ünal and
Kayakutlu, 2020), is designed for continuous variables only, parti-
cles may continuously move outside the boundaries, which affects
the search space exploration (Pang and Ng, 2018), it is not scalable
for many objective problems, and is unsuitable for user preference
articulation.



Table 1
Advantages and disadvantages of Pareto-based multi-objective algorithms found in the literature of multi-objective production optimization.

Algorithm Advantages Disadvantages

NSGA-II - Simple structure
- Guarantees diversity in the objective space
- Easily adapted to different mating schemes
- Easily adapted to different mutation schemes
- Fast convergence
- Handles continuous and discrete variables
- Satisfactory results in complex Pareto front geometries

- Not scalable for many-objective optimization
- Does not guarantee diversity in the decision space
- Unsuitable for user preference articulation in its original form

MOPSO - Fast convergence
- Have few hyper-parameters to tune
- Simple structure
- Less sensible to the initial population
- Guarantees diversity in the objective space

- Considerable risk of falling into local optima
- Originally designed for continuous variables only
- Particles may continuously move outside boundaries
- Poor local search ability
- Does not guarantee diversity in the decision space
- Not scalable for many-objective optimization
- Unsuitable for user preference articulation in its original form

RVEA - Scalable to many-objective optimization
- Stable performance in different problems
- Reliable results in complex Pareto front geometries
- Suitable for user preference articulation
- Guarantees diversity in the objective space
- Handles continuous and discrete variables
- Easily adapted to different mating schemes
- Easily adapted to different mutation schemes
- Fast convergence

- Normalization causes instability in convergence
- More complex structure
- Does not guarantee diversity in the decision space

MOEA/D-NFTS - Scalable to many-objective optimization
- Stable performance in different problems
- Reliable results in complex Pareto front geometries
- Suitable for user preference articulation
- Guarantees diversity in the objective space
- Easily adapted to different mating schemes
- Easily adapted to different mutation schemes
- Incorporates domain knowledge into the optimization
- Fast convergence
- Produces a well-diversified set of strategies

- Requires adaptations according to each problem
- More complex structure
- Designed for discrete variables only
- Requires some sort of prior knowledge
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RVEA is a robust multi-objective algorithm due to its scalability
to many objective problems. It has achieved efficient results and
fast convergence for linear, non-linear, unimodal, multimodal,
continuous, and discontinuous Pareto front geometries. RVEA also
showed stable performance in different problems using the same
hyper-parameter values, which shows it is less dependent on the
user input parameters (Cheng et al., 2016). It also incorporates user
preference articulation as the reference vectors can be distributed
in the objective space according to DMs preferences. As possible
drawbacks, RVEA has a more complex structure than other
methods; objective normalization causes instability in the
convergence (Cheng et al., 2016), so another adaptation method
should be included (i.e., see the adaption method proposed in the
original paper by Cheng et al. (2016), and it does not guarantee
diversity in the decision space in combinatorial problems).

Finally, MOEA/D-NFTS also uses a decomposition-based struc-
ture, whichmakes it scalable to many-objective optimization. It has
shown efficient results and fast convergence for linear, non-linear,
unimodal, and multimodal problems, with different Pareto front
geometries (de Moraes and Coelho, 2022b). It is suitable for user
preference articulation, it can be easily adapted to different mating
and mutation schemes, and since it incorporates a diversity pres-
ervation mechanism, it guarantees diversity not only in the objec-
tive space but also in the decision space, which produces an evenly
distributed set of strategies at the end of the optimization. This can
be achieved through the incorporation of domain knowledge into
the optimization. As disadvantages, MOEA/D-NFTS is designed for
problems with discrete decision variables, it requires adaptations
according to each problem, it has a more complex structure, and
some sort of prior knowledge is needed to build the so-called
knowledge-assisted local search mechanisms.
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5. Limitation and challenges

This section explores the complex limitations of existing multi-
objective optimization frameworks in the context of optimizing
petroleum production. Moreover, it discusses the mathematical
challenges associated with the convergence problem in these al-
gorithms and suggests potential solutions to overcome these
limitations.

5.1. Limitations in multi-objective production optimization

A comprehensive understanding of multi-objective optimiza-
tion algorithms utilized in petroleum production optimization re-
quires acknowledging their inherent limitations. Although
numerous studies have investigated their application in enhancing
production efficiency and decision-making, a critical analysis of
their constraints and shortcomings remains elusive. Addressing
this gap is crucial for two primary reasons: firstly, it deepens our
comprehension of the real-world challenges encountered in the
petroleum industry, and secondly, it offers valuable insights for
refining existing methodologies and crafting optimization strate-
gies tailored to the industry's complexities. The subsequent dis-
cussion will address some of the most significant limitations.

5.1.1. Complexity of reservoir models
Petroleum reservoirs represent highly intricate systems char-

acterized by a multitude of interacting factors. A reliable reservoir
model may comprise millions of grid cells, necessitating hours or
even days for simulation. Despite this complexity, many studies
reviewed in this paper have utilized relatively simple models pri-
marily for methodological testing purposes. Consequently, there
exists a significant gap in the literature pertaining to the study of
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more complex reservoirs. Notably, only one study by Hanea et al.
(2019) has examined a reservoir with over 300,000 grid cells,
highlighting the limited exploration of such complexities.
Commonly used models include the SPE10 model (Christie and
Blunt, 2001), the Brugge test model (Peters et al., 2009), the Egg
model (Jansen et al., 2014), and the PUNQmodel (Floris et al., 2001),
as depicted in Table 2, highlighting the models employed across
various studies.

To address this gap, several approaches can be employed to
mitigate the challenges associated with complex reservoir
modeling. One promising avenue involves the application of
physics-informed machine learning methods, which have emerged
as a novel tool for reducing complexity while preserving the
essential properties of the original model. By leveraging these
advanced techniques, researchers can navigate the intricacies of
complex reservoir systems more effectively, thereby enhancing our
understanding of petroleum reservoir dynamics and facilitating the
development of robust optimization strategies. Section 6.2 provides
detailed information.

5.1.2. Scalability to large-scale problems
Optimizing production across numerous wells or fields presents

a formidable challenge. Existing multi-objective optimization al-
gorithms often struggle to "keep up" with the complexity and scale
of such large-system applications. Addressing this scalability issue
requires multi-pronged approaches. Decomposing the large-scale
problem into smaller, manageable sub-problems could be
explored. Leveraging parallel computing could offer substantial
computational speedups (Al-Mouhamed et al., 2024; Mira et al.,
2023; Rigon et al., 2024). Additionally, investigating hybrid algo-
rithms that combine the strengths of different multi-objective
optimization approaches tailored to specific problem aspects
might be fruitful (Parashar et al., 2023).

Furthermore, incorporating domain knowledge into the algo-
rithms through surrogate models or reduced-order models could
significantly reduce computational burden while maintaining
acceptable accuracy (Zhao et al., 2024). Lastly, developing special-
ized multi-objective optimization algorithms specifically designed
for the unique challenges of petroleum production systems pre-
sents a long-term solution path. It should be noted that tackling
real-world problems like these often requires a combination of
approaches, and the optimal solution depends on the specific
context and resources available. Evaluating and adapting these
potential solutions in collaboration with domain experts is crucial
for unlocking the full potential of multi-objective optimization in
large-scale petroleum production optimization.

5.1.3. Limited practical validation
Despite existing research on multi-objective optimization for

petroleum production optimization, a significant gap exists in the
translation of these methods to real-world implementation and
Table 2
Reservoir models implemented multi-objective optimization field development studies.

Reservoir models Authors

Egg model van Essen et al. (2009a, 2009b, 2011); Fonseca et al. (2014a); Y
(2017); Rostamian et al. (2019a, 2019b); Pinto et al. (2019); Zha

PUNQ Chang et al. (2015a, 2015b); Liu and Reynolds (2015), Liu et al.
Brugge Chen et al. (2011, 2012); Zhao et al. (2019); Al-Aghbari et al. (2
Synthetic 2D model Min et al. (2011); Yasari et al. (2013); Isebor and Durlofsky (2014

2017); Moradi and Rasaei (2017); Bagherinezhad et al. (2017)
3D model (synthetic/

real)
Cardoso (2009); Hasan et al. (2013); Khan et al. (2013); Fonseca e
Fu and Wen (2018); Hanea et al. (2019); Wang et al., (2021a, 20

No data Harrison and Tweedie (1981); Xiao et al. (1998); Rahman et al. (2
(2017); Camara et al. (2018); Liu et al. (2021); Yan et al. (2021)
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validation. This lack of practical validation raises concerns about
their effectiveness and applicability in actual field settings. While
studies often propose solutions promising increased profitability
and productivity, a crucial gap remains in the absence of research
following a robust methodology in real-world cases and reporting
long-term production outcomes. This lack of post-implementation
evaluation hinders the industry's adoption of multi-objective
optimization methodologies and leaves their superiority and ad-
vantages unproven. Consequently, much of the research in this area
remains theoretical, and their real-world application, if any, lacks
documented evidence of their effectiveness.

5.1.4. Integration with existing workflows
The integration of optimization algorithms with existing engi-

neering workflows and software tools presents a notable challenge
within the industry. This difficulty is compounded by the fact that
the non-free lunch theorem holds true for each unique case in
reservoir engineering, as every reservoir possesses its own distinct
set of challenges and complexities. Consequently, there is no uni-
versally applicable global optimization methodology that can
seamlessly address the intricacies of multi-objective optimization
problems across all scenarios. However, the authors suggest the
adoption of a standardized language concerning optimization ap-
proaches, which could facilitate the translation of any optimization
methodology to accommodate new fields or objective functions
with varying optimization variables. This standardized framework
should aim to streamline the integration process and enhance
interoperability between different optimization techniques,
thereby promoting greater efficiency and effectiveness in
addressing multi-objective optimization challenges within the
petroleum industry.

5.1.5. Handling uncertainty
Petroleum production systems inherently harbor uncertainty

due to geological variability, reservoir property heterogeneity, and
dynamic operational conditions. Regrettably, many multi-objective
optimization algorithms utilized in this sector face challenges in
adequately incorporating and managing such uncertainties. Sur-
prisingly, 45% of the studies reviewed in this paper have exclusively
employed single reservoir or economic models, representing a less
sophisticated real-world scenario. However, lacking post-research
support, these studies have not tested their models on an
ensemble of reservoir or economic models. This deficiency often
yields solutions ill-suited for real-world complexities, thereby
potentially compromising their feasibility and economic viability.

Recently, various approaches have emerged to mitigate uncer-
tainty in reservoir realizations. Data space inversion, learning-
based data-driven forecast approaches, and RMfinder are among
the tools that can be utilized for this purpose in multi-objective
field development optimization. Although these methods have
demonstrated applicability in simple to moderately sophisticated
asari and Pishvaie (2015); Fonseca et al. (2016); Siraj et al. (2017); Rostamian
o et al. (2020a); Farahi et al. (2021a, 2021b, 2022); Wang et al. (2021a, 2022a)
(2016a); Hutahaean et al. (2019)
021, 2022a, 2022b)
a); Liu and Reynolds (2014, 2016b); Capolei et al. (2015); Christiansen et al. (2016,

t al., (2014a; 2015); Safarzadeh et al. (2015); Chang et al. (2015b), Lu et al. (2017);
21c); Alpak et al. (2022)
001); Bailey et al. (2005); Plaksina and Gildin (2015); Fu andWen (2017a); Ji et al.,
; Zhang et al. (2021)
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reservoirs, they have not yet been applied in the context of multi-
objective optimization for complex reservoirs (Meira et al., 2020;
Fu et al., 2023; Hui et al., 2023).

5.2. Convergence challenges

Navigating the complex landscape of multi-objective optimi-
zation poses significant challenges, particularly concerning the
convergence capabilities of existing algorithms. In the pursuit of
simultaneously optimizing conflicting objectives, multi-objective
algorithms face the challenging task of efficiently exploring the
solution space to identify a diverse set of high-quality solutions.
However, several factors may either decrease or increase the
convergence capabilities of multi-objective algorithms for multi-
objective production optimization. The list below summarizes the
main aspects that may affect the performance of existing multi-
objective approaches.

5.2.1. Allowed number of objective function evaluations
The allowed number of objective function evaluations plays a

crucial role in determining the convergence behavior of a multi-
objective algorithm. With a limited budget of objective function
evaluations, the algorithm must make efficient use of each evalu-
ation to explore and exploit the solution space effectively. A smaller
number of evaluations may constrain the algorithm's ability to
thoroughly explore the solution space, potentially leading to pre-
mature convergence to suboptimal regions or insufficient coverage
of the Pareto front.

5.2.2. Stochasticity
Unlike deterministic algorithms, which follow a fixed set of rules

to iteratively improve solutions, evolutionary algorithms introduce
randomness into the optimization process through mechanisms
such as mutation, crossover, and selection (Coello et al., 2007). This
stochasticity allows evolutionary algorithms to explore diverse
regions of the search space, facilitating the discovery of novel so-
lutions and preventing premature convergence to local optima. By
incorporating randomness, evolutionary algorithms can navigate
non-convex search spaces where traditional optimization tech-
niques may struggle (Schulze-Riegert et al., 2007). However, the
stochastic nature of evolutionary algorithms also introduces chal-
lenges, such as convergence variability, as there is a need to run this
type of algorithm multiple times to evaluate its average
performance.

5.2.3. Pareto front geometry
The shape, complexity, and distribution of points along the

Pareto front directly impact the convergence behavior of optimi-
zation algorithms. In scenarios where the Pareto front exhibits a
smooth and convex shape, with well-separated solutions, conver-
gence tends to be relatively straightforward as algorithms can
efficiently explore and converge towards the front. However, in
cases of non-convex, irregular, or discontinuous Pareto fronts with
densely packed solutions, the convergence process becomes more
challenging. Multi-objective algorithms may struggle to accurately
locate and maintain a diverse set of non-dominated solutions,
leading to premature convergence or the failure to adequately
cover the Pareto front (Cheng et al., 2016).

5.2.4. Dimensionality
As the number of decision variables increases, the search space

expands exponentially. This means that the optimizer needs to
explore a larger number of practical solutions, making it increas-
ingly difficult to find the optimal solutions within a reasonable
amount of time. In addition, in high-dimensional spaces, data
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points become sparse, meaning that the available data becomes
less representative of the entire search space (Coello et al., 2007).
This can lead to difficulties in accurately estimating the objective
function and constraints, impacting the optimization process.

6. Future directions

Historically, companies and the research community have
preferred gradient-based methods over derivative-free approaches
for multi-objective production optimization. Gradient-based
methods have the advantages of being fast, mathematically accu-
rate, and can be easily adapted for robust optimization (Hanea et al.,
2019). However, gradient-based approaches have many disadvan-
tages, such as not being able to find multiple non-dominated so-
lutions, performing poorly in complex Pareto front geometries such
as in non-convex, discontinuous, and non-smooth fronts, and being
trapped into local optimum (Schulze-Riegert et al., 2007).

Recent research for multi-objective production optimization has
been focused on a posteriori approach, using derivative-free
methods, whose main benefits are: (i) they do not require
manual identification of the optimal solutions; (ii) most of them
achieve good results in many geometries of Pareto front and in non-
linear optimization problems, (iii) and they may find several
optimal solutions in a single optimization run. However, the pro-
posed derivative-free methods are population-based meta-heuris-
tics, which often require an infeasible number of reservoir
simulations. This behavior is even worse in the presence of robust
optimization, where each objective function evaluation is multi-
plied by the number of the ensemble of models. Without proper
algorithm development, derivative-free methods may be imprac-
tical for real-world field development.

Therefore, in this section, we discuss future directions for multi-
objective production optimization. These opportunities have been
classified into four non-exclusive categories: (1) Improvements for
derivative-free optimization, (2) Machine learning-based surrogate
models, (3) Human interaction and knowledge incorporation, and
(4) Robust optimization.

6.1. Improvements for derivative-free optimization

This section presents open or under-explored opportunities that
researchers and practitioners from the petroleum industry can
explore to increase convergence on derivative-free optimization by
integrating intelligent mechanisms with statistically significant
contributions to the field.

6.1.1. Diversity preservation
There are benchmark cases that use discrete decision variables.

For instance, it is possible to consider a binary solution represen-
tation, where the decision vector contains several candidates well
positions, and the binary solution representation represents the
presence (1) or absence (0) of each candidates’ well position
(Avansi and Schiozer, 2015). In these problems, the optimization
procedure becomes the exploration of different combinations of
values, in which combinatorial optimization methods are required.
However, combinatorial optimization methods may generate a
large number of duplicated strategy vectors (Nojima et al., 2005).
The existence of duplicated strategies results in inadequate di-
versity, which consequently slows the convergence speed, as more
generations are required for a multi-objective algorithm to find the
Pareto front. Although multi-objective algorithms have built-in
methods to achieve diversity, such as environmental selection,
this is mostly done in the objective space. To address this issue,
researchers can use diversity preservation mechanisms to add di-
versity to the population and avoid duplicated strategies (Jiang
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et al., 2021). For instance, some examples of diversity preservation
mechanisms include storing and prohibiting duplicated strategies
(Glover, 1990), inserting random strategies into the population
(Deb et al., 2007; Jiang and Yang, 2017), and estimating conver-
gence direction (Gee et al., 2013). Currently, the only method
applied for multi-objective production optimization that specif-
ically addresses diversity preservation methods in the decision
space is MOEA/D-NFTS (de Moraes and Coelho, 2022b). Further
research in this area could improve the convergence capabilities
and convergence speed ofmulti-objective algorithmswhen applied
to multi-objective production optimization.

6.1.2. Global and local search
Multi-objective algorithms have the difficult task of exploring

(global search) the often-large search space of solutions as much as
possible while exploiting (local search) promising regions in detail.
Although the former is usually done by every multi-objective al-
gorithm, since they have inherent characteristics of global search,
the latter is not naturally included in most algorithms. To handle
both exploration and exploitation efficiently, multi-objective al-
gorithms must be combined with local search methods. There are
different local search methods in the literature that could be
applied in the petroleum industry to enhance the exploitation ca-
pabilities of multi-objective algorithms, such as the Guided Local
Search (Alhindi and Zhang, 2013), Simulated Annealing (Kirkpatrick
et al., 1983), and Tabu Search (Glover, 1990), among others. There is
also a class of methods known as Memetic Algorithms, which
combine a baseline evolutionary algorithm with several local
searchmethods, which have been shown to accelerate convergence
and produce a larger and well-distributed Pareto front (Sun et al.,
2020). However, as most local search methods perform exhaus-
tive searches in the neighborhood of candidate solutions (which
requires several evaluations of objective functions), they require
adaptations (i.e., combination with surrogate models) before their
implementation in multi-objective production optimization.

6.1.3. Adaptive hyper-parameters
Multi-objective algorithms are intrinsically parametrized. Mu-

tation rates, crossover probabilities, tournament selection sizes,
learning factors are some examples of parameters (also known as
hyper-parameters) used in Pareto-based multi-objective algo-
rithms such as NSGA-II and MOPSO. These hyper-parameters are
used to control the optimization process (Eiben et al., 1999). Tuning
these parameters is a difficult task in multi-objective production
optimization due to the computationally expensive nature of
reservoir simulation, as it increases the optimization time and may
delay the project development. Regrettably, current state-of-the-
art methods lack readily adjustable parameters. Hyper-parameter
techniques have been proposed in the literature to minimize user
input dependence.

Adaptive hyper-parameters use feedback from the optimization
to automatically adapt the hyper-parameter values throughout the
optimization (Eiben et al., 1999). The main idea is that fixed hyper-
parameters may reduce the algorithm's performance, as these pa-
rameters may require different values in various stages of the
optimization process (Thierens, 2002). Some examples of studies
that investigated adaptive hyper-parameters were made by
Thierens (2002), which provided an early proposition of some
adaptive methods for the mutation rate of evolutionary algorithms.
Zielinski and Laur (2007) proposed an adaptive scheme for the
MOPSO algorithm to avoid user input parameters. Li et al. (2011)
used adaptive methods to control crossover probabilities and sca-
larizing factors of the multi-objective differential evolution algo-
rithm. More recently, Zhou et al. (2021) studied an adaptive hyper-
parameter method based on Bayesian optimization for ship fuel
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consumption. These adaptive methods could inspire further
research to reduce the requirement of user input parameters and
even improve the performance of multi-objective algorithms in
multi-objective production optimization.

6.1.4. Hyper-heuristics
Typically, multi-objective algorithms have a fixed heuristic

structure (i.e., predefined crossover and mutation mechanisms)
that is often overspecialized for a given problem. However, when
the problem slightly changes, such methods tend to perform poorly
and require manual modifications, a time-consuming task that
delays the project development (Coello et al., 2020). Hyper-
heuristics is a research field that has been promoted for multi-
objective problems in the last decades to solve this issue.

Hyper-heuristics aim to identify the best combination of heu-
ristics (such as crossover and mutation operators) to solve a
particular problem, which may be very useful for multi-objective
production optimization as there are several simulation models
with different decision variables and Pareto front geometries that
would, otherwise, require manual modifications to operate under
such divergent scenarios (Burke et al., 2013). Hyper-heuristics have
been combined with Pareto-based multi-objective algorithms to
solve problems with combinatorial and continuous search spaces
(see the survey by Burke et al. (2013)) and have been classified as
one of the main research areas to be investigated in the future of
multi-objective problems (Coello et al., 2020). However, hyper-
heuristics increase the computational burden and should be
considered alongside approximation mechanisms (such as surro-
gate models).

6.1.5. Scalable methods
In optimization theory, multi-objective problems contain two or

three objective functions, while many-objective problems compose
four objectives and above (Deb and Jain, 2014). Many-objective
problems represent a whole different scenario for multi-objective
production optimization. According to Deb and Jain (2014), the
challenges of handling many-objective problems using traditional
multi-objective algorithms include: (i) a large number of strategies
is non-dominated; (ii) diversity evaluation becomes even more
computationally expensive; (iii) recombination may be inefficient;
(iv) representation of the trade-off surface is difficult; (v) perfor-
mance metrics are computationally expensive; and (vi) visualiza-
tion of the Pareto front is difficult. Considering that problems such
the multi-objective production optimization have a wide range of
potential objective functions, future research should concentrate
efforts on scalable methods, that is, methods that can handle both
multi and many-objective problems.

Decomposition-based methods are a class of scalable algo-
rithms. Decomposition-based methods use a decomposition func-
tion that converts a multi-objective problem into scalar sub-
problems to be optimized simultaneously (Zhang and Li, 2007).
Examples of decomposition-based multi-objective algorithms
include MOEA/D (Zhang and Li, 2007), NSGA-III (Deb and Jain,
2014), MOEA/D-RFTS (De Moraes and Coelho, 2022a), RVEA
(Cheng et al., 2016), among others.

Currently, only a few works have used decomposition-based
methods specifically developed for oil and gas field development
(Zhao et al., 2020a; de Moraes and Coelho, 2022b). Decomposition-
based methods are known to generate evenly spread set of solu-
tions across the feasible region and are regarded as among the top
algorithm designs for multi-objective optimization problems
(Coello et al., 2020). However, it is important to note these algo-
rithms cannot be used out-of-the-box for an arbitrary number of
objectives because it becomes fatally necessary to include DM
preferences to define specific regions of interest in the search space
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(the user preference articulation) in high-dimensional objective
spaces. Nonetheless, decomposition-based methods can incorpo-
rate these user preference articulations, which makes the applica-
tion of decomposition-based for multi-objective production
optimization an interesting research topic.

6.1.6. Large-scale optimization
Multi-objective production optimization can encompass a large

number of decision variables, possibly reaching several hundred.
This circumstance affects the optimization process as the perfor-
mance of multi-objective algorithms tends to deteriorate in high-
dimensional decision spaces (Zille et al., 2018). Recent studies
have been proposing different mechanisms to handle large-scale
problems. Most of the works use the concept of cooperative co-
evolution, where the idea is to optimize several independent
populations, each one containing a subset of the original set of
decision variables (Iorio and Li, 2004; Antonio and Coello Coello,
2013). Zille et al. (2018) use a framework based on problem trans-
formation combined with grouping mechanisms. The authors
tested their proposal on selected benchmarks with thousands of
decision variables, and the results demonstrate an increase in the
baseline multi-objective algorithm performance. These methods
were experimented on test functions with inexpensive objective
function calculations; therefore, applying cooperative co-evolution
or problem transformation maybe difficult in the petroleum in-
dustry as they increase the necessary amount of function evalua-
tions. However, results are promising and could be extended for
further research on large-scale multi-objective production
optimization.

6.1.7. Setting the initial population of strategies
One important aspect of multi-objective production optimiza-

tion, which is often neglected, is the definition of the initial pop-
ulation, which contains the initial set of production strategies that
will be used as input to the multi-objective algorithm, from which
the optimization process will evolve. Most papers from the petro-
leum literature generate the initial population randomly. These
random mechanisms have been questioned in the literature due to
their insufficiency of diversity (Han et al., 2016; Liu et al., 2017; Gu
and Wang, 2020). Considering that most multi-objective algo-
rithms are highly sensible to the initial population, an inadequate
mechanism to generate the initial population increases the time
required to converge to the Pareto front. In computationally
expensive problems, such as multi-objective production optimi-
zation, this represents a real threat. To overcome these problems,
researchers have been proposing different approaches to create the
initial population.

For instance, Friedrich and Wagner (2015) studied the effects of
applying single objective algorithms methods to initially explore
the search space and then use the obtained best solutions as the
initial population of a multi-objective algorithm. The authors
concluded that, for some problems (specially for expensive evalu-
ations), there might be substantial improvements in quality and
processing time.

Hamdan and Qudah (2015) investigated the performance of
different sampling techniques, such as Latin hypercube and Quasi-
random, as initialization methods to set the initial population of
multi-objective algorithms. The authors also proposed a novel
method called Quasi_LHS, which combined both the Latin hyper-
cube with Quasi-random numbers. They assessed the mentioned
methods using the NSGA-II algorithm with a set of continuous
optimization problems and concluded that using the random
initialization method does not perform well when compared to
other methods.

Another technique to generate the initial population that has
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gained attention in the past years uses the Chaos theory, which
studies the application of evolution functions that exhibit chaotic
behaviors (Lu et al., 2013). Chaotic functions have been applied to
multi-objective algorithms to induce chaotic behaviors, which
helps the algorithms escape local optima, and to generate values for
the decision variables that are indeed uniformly distributed, which
have shown to be a more efficient initialization method on some
problems (Yuan et al., 2002; Han et al., 2016; Liu et al., 2017; Gu and
Wang, 2020).

Functions such as chaotic maps can be applied to multi-
objective production optimization to generate values for the deci-
sion variables with a more uniform spread of points. With this
approach, the initial strategies may be better distributed in the
objective space, which can considerably increase the convergence
process. Most chaotic procedures were designed for a continuous
domain, but there are also strategies to generate points in discrete
spaces, e.g., the Lambic Map (Lambi�c, 2015).

6.1.8. Performance metrics and statistical analysis
Comparing the performance of a multi-objective algorithm is

not straightforward. Papers from the petroleum industry usually
uses the Pareto front information, the number of generations it took
to converge or specific petroleum-related information as perfor-
mance metrics. Yet, there are other common and powerful perfor-
mance metrics in optimization that could be used to provide
further information about multi-objective algorithm performance.
An example is the inverted generational distance (IGD), a conver-
gence metric (Sierra and Coello Coello, 2005).

The IGD calculates the average Euclidean distance of each
objective vector in the set of obtained solutions and the closest
objective vector of the Pareto front. Eq. (5) defines the IGD:

IGDðPF;AÞ¼ 1
PF

�
XjPFj

i¼1

minA

j¼1
dðPFi; aiÞ (5)

where A is the set of obtained solutions (or the approximated front),
PF is the Pareto front or a reference set, and PFi is the i-th element of
the Pareto front.

Although IGD is the most common performancemetric in multi-
objective optimization problems, there are other convergence
metrics such as hyper volume (Zitzler and Thiele, 1999) and delta
measure (Deb et al., 2002), coverage metrics like diversity measure
(Deb et al., 2002), and performance success metrics like success
counting (Sierra and Coello Coello, 2005), among others. For a list of
performance metrics, please refer to the work by (Mirjalili and
Lewis, 2015). Researchers from the petroleum industry can
include performance metrics when comparing multiple algorithms
to provide additional information about convergence, distribution,
and coverage. After using performance metrics, statistical methods
such as the non-parametric Wilcoxon signed-rank test (Wilcoxon,
1992) can be utilized to assert whether the contributions are sta-
tistically significant or not.

6.1.9. Hybrid methods
Another under explored approach in the literature of multi-

objective production optimization is the combination of gradient-
based with derivative-free algorithms as hybrid methods. The
integration of different mechanisms is a common research topic in
the optimization research field, which main goal is to create
powerful methods that combines their advantages while reducing
their individual drawbacks. Merging the mathematically accurate
and fast gradient-based methods with Pareto-based algorithm's
ability of automatically finding strategies that solves the problem
could be also another interesting research topic.



Fig. 7. Illustration of a random forest prediction with three decision trees.
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6.2. Machine learning-based surrogate models

Production forecast requires complex simulations. These com-
plex simulations involve solving nonlinear dynamic equations that
represent the reservoir fluid behavior (Bertini et al., 2021). Due to
this expensive nature, only some of the strategies can be properly
evaluated using reservoir simulation (Golzari et al., 2015). None-
theless, researchers have been employing alternatives to approxi-
mate the objective function values, using techniques known as fast
objective function estimators, which includes surrogate models,
proxies, streamline based simulators, among others (Ding et al.,
2020).

Fast objective function estimators are often criticized due to
their inability to comprehend the changes in a production strategy
life cycle. For this matter, fast objective function estimators may not
be a proper replacement for reservoir simulation since they may
not produce equivalent results. However, if employed for
derivative-free optimization, fast objective function estimators
cannot be used as a replacement for conventional reservoir simu-
lation but as a guide for the algorithm's internal mechanisms for
the next best decision. Surrogate-assisted derivative-free methods
have shown to have improved convergence capabilities when their
genetic operators are combined with surrogate models to predict
the best decision that could be made so far using the data collected
during the optimization (de Moraes and Coelho, 2022a).

Alpak and Jain (2021) developed a machine-learning acceler-
ated optimization method for well-location optimization (WLO)
using support-vector regression (SVR) as a proxy to reduce
computational costs. Field tests demonstrated a 40%e60% reduc-
tion in overall computational cost, validating the method's appli-
cability for real-life WLO problems, though tuning SVR hyper-
parameters remains a challenge. Alpak et al. (2022) developed
and validated BiMADSþþ, a novel parallel algorithm for bi-
objective optimization in field-development planning, leveraging
a new implementation of the mesh adaptive direct search (MADS)
algorithm. Field tests on well-location optimization problems
demonstrated significant computational efficiency, with
BiMADSþþ providing over fourfold speedup compared to tradi-
tional weighted-sum approaches while effectively identifying Par-
eto fronts without ad hoc parameter adjustments (Alpak, 2022).
Moreover, Atadeger et al. (2023) investigate the use of deep
learning-based (embed to control and observe (E2CO)) and kernel-
based (LS-SVR) proxy models in nonlinearly constrained produc-
tion optimization, comparing their computational efficiency and
optimal results with high-fidelity simulators (HFS). The study finds
that both proxy models achieve near-optimal NPV results with
significantly reduced computational effort, and when enhanced
with the iterative-sampling-refinement (ISR) technique, they
closely match the NPV results obtained by HFS, demonstrating
substantial efficiency in waterflooding scenarios.

This section discusses opportunities to approximate the objec-
tive function values of multi-objective optimization problems using
machine learning-based surrogate models.

6.2.1. Random forest
Random forest is a statistical learning technique composed of an

ensemble of decision trees, where each tree makes its own pre-
diction of the objective functions of an unevaluated strategy, and
the final result is the average result of all the decision tree pre-
dictions (Breiman, 2001). Fig. 7 illustrates this principle. This
technique has gained attention over the past years as a surrogate
model technique since it handles multiple objectives (Wang and
Jin, 2018; Han and Wang, 2021; Rostamian et al., 2022; de
Moraes and Coelho, 2022b). Random forests can handle both
continuous and discrete decision variables, even nominal and
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categorical ones. In addition, since random forest has an if-then-
else rule structure, when used with low-dimensional decision
vectors, it is possible to plot the decision tree configuration to
visually understand the decisions behind the prediction. These
benefits make it a promising technique for data-driven production
optimization surrogate modeling.

6.2.2. Physics-informed
Surrogate models are generally data-driven (Zhao et al., 2020a,

2020b; Wang et al., 2021b). Data-driven surrogate models are
trained using historical data (obtained by real reservoir simulation)
to approximate the objective functions of unevaluated strategies (Li
et al., 2020). Themain benefit of data-drivenmodels is that they are
fast and simpler since they abstract the complexities of reservoir
simulation (Bertini et al., 2021).

However, using data-driven surrogate models has its own
drawbacks. Data acquisition is expensive in multi-objective opti-
mization problems, especially in the presence of high-fidelity
geological models (Golzari et al., 2015). Using data-driven models
in such scenarios leads to a situation where DM must make de-
cisions under partial (or incomplete) information. One conclusion
that has been emerging in the literature is that modern surrogate
models ignore a vast amount of prior knowledge of the problems
they are being applied (Raissi et al., 2019).

Recent studies proposed physics-informed methods that incor-
porate knowledge from the laws of physics to solve complex
problems. Instead of using data collected from expensive black-box
models, these methods use physics formulations as “data”. Two
prominent works are the ones by Raissi et al. (2019) and Sun et al.
(2020), which incorporate deep neural network architectures to
approximate values without simulation data. Deep neural archi-
tectures have shown an inherent ability to handle highly nonlinear
and high-dimensional problems (Raissi et al., 2019; Liu et al., 2023).
In their work, they show how these techniques can overcome some
of the drawbacks of data-driven surrogate models and promote
better convergence. Thus, using physics-based models for multi-
objective optimization problems could be an important research
topic in the future.

6.3. Human interaction and knowledge incorporation

Fully automatic methods can only find strategies that are
optimal with regard of the simulationmodel, the decision variables,
and its constraints, which may invariably be an over-simplified
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problem description (Scott et al., 2002). Therefore, complex prob-
lem such as production optimization benefits from human
knowledge incorporation (Gaspar et al., 2016). This section presents
ideas to allow human interaction and knowledge incorporation into
the optimization process of multi-objective optimization problems.

6.3.1. Interactive methods
Interactive optimization or ‘human-in-the-loop” methods are a

class of algorithms that allow user interaction while they are
running (Scott et al., 2002). The main benefit of having human
interaction is that optimization can be more intelligent when
managing constraints, settings, or even hyper-parameters that
might be challenging to set at the beginning of the optimization
(Brown, 2019). Scott et al. (2002) provided an overview of inter-
active methods. Since then, many methods have been developed.
Some examples of interactive techniques that have been proposed
in the literature include.

� Tezcaner and K€oksalan (2011) propose an interactive algorithm
for bi-objective problems based on linear utility functions. At
every iteration, the algorithm asks the DMs to compare the two
most efficient strategies that maximize or minimize both linear
utility functions (one for each objective), to its adjacent strate-
gies. The idea is to reduce the number of eligible candidates to
efficient individuals and to guide the evolution using DMs
knowledge.

� The visual interactive approach for stochastic multi-objective
problems (VISMOP) (Balibek and K€oksalan, 2012) is based on
joint confidence regions, and it uses reference points, multi-
variate statistical analysis and the Tchebycheff decomposition.
In VISMOP, the DM interactively decide which regions are more
interesting to explore, through the definition of both the di-
rection and the step size to that direction.

� In the interactivemethod using reservation and aspiration levels
for evolutionary multi-objective optimization (IRA-EMO) algo-
rithm (Saborido et al., 2019), DMs help the algorithm by indi-
cating their preferences at every iteration, in the form of
aspiration (lower) and reservation (upper) points in the objec-
tive space. The DMs can also interactively set the number of
solutions they want to analyze at every iteration.

� The interactive centroid method (ICM) (Chou et al., 2020) is an
interactive method, originally designed for multi-objective dis-
patching problems, that allows DMs to choose, at every iteration
the solutions that will be categorized into the following three
categories: (a) the most preferred; (b) the least preferred; and
(c) indecisive.

Besides, an engineering research field where interactive
methods have been studied and which may also inspire future
projects in the petroleum field is architectural and structural design
(Brown, 2019). In this field, architects and engineers use interactive
methods such as paraGEN (Turrin et al., 2011), a framework that
uses genetic algorithm structures (such as selection, recombination
and mutation) to build cooperative systems (human-computer in-
teractions) to explore the alternatives for designing buildings and
other structures, and structure FIT (Mueller and Ochsendorf, 2015),
a tool with a live graphical user interface where experts can
interactively modify strategies returned by an optimization
algorithm.

The concept of interactive methods can be applied to multi-
objective production optimization. Allowing human interaction
gives an opportunity for researchers and petroleum engineers to
interactively modify solutions according to the institution or
company goals. Besides, it is possible to accelerate the optimization
process by modifying the variables to desired configurations that
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are well-established concepts in the petroleum field but that is
difficult to constraint and/or would require many iterations of a
multi-objective algorithm to achieve (e.g., move injector wells to
high-permeability zones and move producer wells to high oil
saturation zones). This mechanism may introduce individuals in
the multi-objective algorithm's population that accelerate the
optimization process.

The development and implementation of interactive methods is
a multidisciplinary task since it requires professionals from opti-
mization, petroleum engineering and information visualization
research fields. Besides, determining the most appropriate division
between human and computer labor is one of the most important
questions in interactivemethods, whichmay require a considerably
effort (Scott et al., 2002). However, future research in interactive
methods could lead to the development of cooperative intelligent
systems for multi-objective production optimization.

6.3.2. Multi-criteria decision-making
The number of solutions in a multi-objective production opti-

mization is often large. One question that arises after the optimi-
zation takes place is, "How to select the best alternative among
these several conceptually optimal strategies?". Multi-criteria de-
cision-making (MCDM) methods are a class of decision-making
methods that could assist the petroleum industry. The purpose of
MCDM is to sort or classify solutions according to DMs’ preferences,
to help them decide on a single alternative when there is a set of
optimal possibilities and a choice between themmust bemade. The
field of MCDM has addressed and developed powerful methods
over the last decades to help DMs decide on solutions to complex
multi-objective problems (Miettinen, 1998).

More recently, researchers have proposed the hybridization of
multi-objective algorithms and MCDM techniques to incorporate
DMs preferences into the optimization process. These hybrid
methods can be classified into three main categories: before, when
DMs preferences are incorporated before the optimization takes
place; during, when the methods incorporate DMs preferences
interactively (as shown in Section 5.3.1); and after, when DMs
preferences are incorporated after the search (Purshouse et al.,
2014). The hybrid multi-objective algorithm that uses MCDM
techniques has been shown to be particularly effective in complex
problems when DMs knowledge can be modeled as user prefer-
ences (Marler and Arora, 2004). Although the selection for a pro-
duction strategy is a multi-step process involving several analytical
observations, the decision analysis could be highly supported by
the application of an MCDM technique.

6.4. Robust optimization

Robust optimization aims to find strategies that remain slightly
unchanged when presented with uncertain conditions (Beyer and
Sendhoff, 2007). This section presents a class of algorithms, in the
context of multi-objective optimization, to handle time-varying
features. It also introduces the concept of representative models.

6.4.1. Dynamic methods
A dynamic optimization problem is when objective functions,

constraints, or decision variable boundaries change over time (Deb
et al., 2007). There are two computational procedures to handle
dynamic problems: (1) generating a handful of events to be solved
off-line and (2) optimizing the time-varying features on-line (Deb
et al., 2007). Robust optimization for multi-objective production
optimization has been performed using approach (1), but efforts
have been made by the optimization scientific community to
develop methods to handle the second procedure. Dynamic multi-
objective optimization methods (DMOM) have been developed to
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handle time-varying features in multi-objective problems using
several propositions.

There are DMOMs that introduce random or mutated solutions
whenever a change is detected (Deb et al., 2007), keep previous
solutions, and use prediction methods to generate novel solutions
according to the movement of change (Jiang and Yang, 2017), keep
records of previous solutions to be possible to change back to
previous steps (Azzouz et al., 2017), use co-evolving populations to
optimize solutions in different spaces (Branke et al., 2000), and
combine the multi-objective algorithms with regression-based
prediction methods such as Kalman filter to track the dynamic
changes (Muruganantham et al., 2016), among others.

A DMOM would have little to no effect under geological un-
certainties. However, there are some other uncertain sources, such
as economic, that could be studied as a DMOM. As the time-value of
money occurs outside of a reservoir, there would be no need to
build different simulation models to compute, for instance,
different crude oil prices. Instead, the problem could be defined as a
Dynamic multi-objective optimization problem (DMOP) such as
demonstrated in Eq. (6):

min F (x/) ¼ Cf1(x/, t), f2(x/, t), …, fM (x/, t) D (6)

s.t. x/ 2 U, t 2 Ut

where U is the decision feasible region, t is a discrete-time step,
x/ ¼ [x1, x2, …, xN] is the strategy vector, and Ut is the time step
feasible region. In this case, the objective functions are subject to
change over time due to economic uncertainties. Instead of per-
forming an off-line procedure to handle it, an on-line approach
could bemade using a DMOM. DMOM is still a fairly recent research
topic, but it opens an opportunity to develop dynamic methods for
multi-objective problems that could expand the possibilities of
optimization under uncertainties in some cases.

6.4.2. Representative models
There are many uncertainty sources in an oil and gas field

development, including geological, economic, technological, and
political uncertainties, among others (Schiozer et al., 2015). Ideally,
each one of these uncertainties should be modeled and considered
during the optimization. However, this would be infeasible as the
number of simulations would be impractically time-consuming. For
this purpose, the identification of representative models (RM) has
emerged in the literature, whose central idea is the identification
and selection of a subset of models with the highest impact on the
decision-making process (Schiozer et al., 2004). Sarma et al. (2013)
proposed a minimax approach for selecting a few statistically
representative reservoir models from a large ensemble, efficiently
matching target percentiles of multiple output responses while
ensuring maximal difference in the input uncertainty space. This
approach demonstrated superior performance and speed
compared to traditional clustering methods, facilitating better
decision-making and planning in the face of large model sets.
Optimization procedures, such as RMFinder, have been developed
as scenario reduction techniques (Meira et al., 2020). According to
the authors, RMFinder selects RMs that effectively decrease the
number of simulation models while maintaining the representa-
tiveness of the problem's uncertainties. Scenario reduction tech-
niques such as RMFinder can severely decrease the number of
reservoir simulations in robust production optimization problems
and should be considered as an important research topic for the
future (Meira et al., 2020). Gao et al. (2023) proposed a two-stage
multi-objective optimization strategy to select representative
deterministic models (P10, P50, P90) in uncertainty quantification
workflows, balancing conflicting requirements and constraints
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efficiently. This method, which is evaluated on realistic examples,
demonstrates robustness and efficiency, significantly reducing
computational costs while ensuring high-quality model selection
that meets both performance and regulatory constraints.

7. Conclusions

This paper has presented an essential review of multi-objective
production optimization. Basic concepts and existing work in the
literature were discussed. This review shows that there have been
significant advancements in the past decades, especially for
derivative-free methods. A posteriori approaches, mainly
composed of Pareto-based methods have been developed to find
production strategies that automatically represent the best trade-
offs between multiple conflicting criteria.

However, as the developed derivative-free methods for multi-
objective production optimization are population-based meta-
heuristics, they often require an infeasible number of reservoir
simulations. This makes them impractical for some real-world
problems, especially in ensemble-based field development opti-
mization. Furthermore, several studies show that methods like
stochastic simplex approximate gradient (StoSAG) demonstrate
computational efficiency when dealing with continuous optimi-
zation parameters and multi-objective functions. Therefore, this
paper also presents open challenges and future directions to build
efficient algorithms, organized into four distinct categories: im-
provements for Pareto-based optimization, machine learning-
based surrogate models, human interaction and knowledge incor-
poration, and robust optimization.
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