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a b s t r a c t

Heavy oil is an important resource in current petroleum exploitation, and the chemical composition
information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical
exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-
resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal
the chemical composition of typical heavy oils from western, central, and eastern China. The results
indicate that these heavy oils display significant variations in their bulk properties, with initial boiling
points all above 200 �C. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis
of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen com-
pounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the
heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the
heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of
Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes
and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,
characteristic molecular sets for different heavy oils were identified based on the semi-quantitative
analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy
oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing
mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The world has abundant heavy oil resources (Guo et al., 2016;
Huc, 2010), and high viscosity is a key factor limiting the exploi-
tation of heavy oil (Briggs et al., 1988; Ke et al., 2020; Zhao et al.,
2018). Currently, thermal methods, such as steam-assisted gravity
drainage (SAGD) (Liu et al., 2018), are mainly used for heavy oil
recovery. However, issues such as high-water content, low thermal
efficiency, and low recovery rates arise after multiple thermal cy-
cles (Guo et al., 2016; Pu et al., 2015), highlighting the urgent need
for new viscosity reduction technologies to address late-stage
y Elsevier B.V. on behalf of KeAi Co
production challenges in heavy oil fields. On the other hand,
there are significant differences in the difficulty of heavy oil
development among different oil fields (Li et al., 2017). Apart from
variations in reservoir differences in their response to viscosity-
reducing agents, the chemical composition of heavy oils varies
(Ke et al., 2020). The development of extraction technologies and
viscosity-reducing agents has created a more urgent demand for
understanding the chemical composition of heavy oil.

The chemical composition of heavy oil is extremely complex,
and variations in the content of different components can signifi-
cantly impact its rheological properties (Delgado-Linares et al.,
2022; Zadymova et al., 2017). Based on their correlation with vis-
cosity, compounds in heavy oil can be divided into non-polar waxes
and polar components (mainly resins and asphaltenes) (Xu, 2018).
Non-polar waxes are primarily influenced by physical factors, such
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as temperature, that cause an increase in crude oil viscosity. High
viscosity caused by such factors can be effectivelymanaged through
thermal recovery techniques (Visintin et al., 2005). On the other
hand, the viscosity of heavy oil dominated by polar components is
influenced by intermolecular forces and even chemical reactions,
making the influencing factors more complex (Pierre et al., 2004).

Extensive research has been conducted on the impact of resins
and asphaltenes on the viscosity of heavy oil (Aguiar and Mansur,
2015; Li et al., 2017; Luo and Gu, 2007). Asphaltenes are the com-
ponents in heavy oil with the highest molecular weight, strongest
polarity, and highest viscosity (Ortega et al., 2015). The removal of
asphaltenes can significantly reduce the viscosity of heavy oil by
2e3 orders of magnitude (Ilyin et al., 2016). The presence of resins
facilitates the dispersion of asphaltenes in crude oil (Anisimov et al.,
2014; Franco et al., 2016). In other words, resins can act as additives
to prevent the self-association and subsequent aggregation of
asphaltenes (Carnahan et al., 1999; Sedghi and Goual, 2010). At the
same time, resins molecules can also self-aggregate, resulting in
high viscosity of crude oil (Li et al., 2017). However, the research on
the relationship between the composition of heavy oil and its vis-
cosity is macroscopic. Understanding the composition of heavy oil
at the molecular level can help to further elucidate the mechanisms
behind its viscosity.

The application of new soft ionization and high-resolution mass
spectrometry (HRMS) techniques has greatly advanced the devel-
opment of petroleum chemistry in the past few decades (Hsu et al.,
2011; Palacio Lozano et al., 2020). Ionization techniques such as
electrospray ionization (ESI) can ionize petroleum molecules in
solution at atmospheric pressure, overcoming the problem of
traditional vacuum mass spectrometry ionization techniques being
unable to analyze heavy oil molecules (Marshall and Rodgers,
2008). On the other hand, HRMS has almost achieved the com-
plete separation of petroleum molecules in the mass dimension
(electron mass level), combined with ultra-high mass accuracy
(Hsu, 2012). It can accurately calculate the molecular composition
of compounds based on the precise mass of elements. The early
application of HRMS in analyzing petroleum samples began at the
National High Magnetic Field Laboratory in the United States
(Rodgers et al., 2005). ExxonMobil, in collaboration with this lab-
oratory, made significant breakthroughs in the composition of
heavy oil molecules (Qian and Robbins, 2001; Qian et al., 2001).
With the emergence of commercial instrumentation, many large
petroleum companies and research institutions started utilizing
HRMS for studying the molecular composition of petroleum after
2005 (Barrow et al., 2014; Shi et al., 2014; Wang et al., 2016b).

The ESI ionization technique is widely used for characterizing
the molecular composition of polar compounds in petroleum, such
as nitrogen-containing compounds and acidic oxygen compounds
(Shi et al., 2010). For nonpolar and weakly polar compounds, they
can be converted into strongly polar compounds through chemical
derivatization and then analyzed for their molecular composition
using ESI ionization source. The State Key Laboratory for Heavy Oil
Processing has developed a series of analytical methods in
conjunction with ESI source to achieve HRMS analysis of difficult-
to-ionize compounds. These methods include catalytic oxidation
to convert saturated hydrocarbons into alcohols (Zhou et al., 2012),
sulfonation to transform aromatic hydrocarbons into highly polar
sulfonates (Li et al., 2022), selective oxidation to convert sulfur
ethers into sulfoxides (Liu et al., 2010), and Michael addition re-
actions to introduce strongly polar functional groups into thiol
molecules (Wang et al., 2016a). These methods are increasingly
contributing to a comprehensive understanding of the molecular
composition of heavy oil.

In this study, we intend to use HRMS as a platform to apply
semi-quantitative methods for the molecular composition of
3613
petroleum fractions in heavy oil (Li et al., 2023). Through semi-
quantitative analysis of the molecular composition of typical
heavy oils in China, we aim to elucidate the viscosity-inducing
mechanism of heavy oil at the molecular level. These molecular
composition data can be used to build a viscosity prediction model
for heavy oil, and can also provide reference for the design of
viscosity-reducing agents based on the structure-effective rela-
tionship between heavy oil molecular composition and emulsifi-
cation viscosity reduction.

2. Experimental section

2.1. Materials

The heavy oil samples selected are Xinjiang-P601 from the
Junggar Basin in western China, Henan-L3511 from the Henan
Oilfield in central China, and Shengli-J8 and Shengli-C373 from the
Shengli Oilfield in eastern China. Analytical-grade toluene, n-hep-
tane, n-hexane, methanol, ethanol, and dichloromethane were
purchased from Beijing Chemical Reagent Company, and were
distilled for purification before use. HPLC-grade acetonitrile, carbon
tetrachloride, carbon disulfide, water, iodomethane, silver tetra-
fluoroborate, and sodium periodate were purchased from Aladdin
Reagent. Chlorosulfonic acid was purchased from TCI Chemical Ltd.

2.2. Properties analysis

Viscosity and total acid number (TAN) were analyzed according
to the Chinese industry standards SY/T 0520 and GB/T 18609,
respectively. Saturates, aromatics, resins, and asphaltenes (SARA)
analysis was carried out according to the Chinese industry standard
NB/SH/T 0509e2010, which uses n-heptane as a solvent for
asphaltene precipitation. The basic nitrogen content was tested by
Chinese industry standards SH/T 0612. Elemental analysis of
organic carbon, hydrogen, and oxygen was performed using two
German Elementar instruments. The content of carbon and
hydrogenwas analyzed using the Vario EL cube elemental analyzer
according to ASTM D5291, while the oxygen content was analyzed
using the Rapid-OXY cube elemental analyzer according to ASTM
D5622. The micro elemental analysis of organic sulfur and nitrogen
was conducted using the multi EA3100 elemental analyzer from
Analytik Jena, Germany. The analysis was performed according to
the respective standard methods, ASTM D5453 for sulfur and ASTM
D5762 for nitrogen.

2.3. High-temperature GC analysis

The high-temperature simulation distillation of heavy oil was
performed on an Agilent 6890N equipped with an Analytical Con-
trol SIMDIS HT750 capillary column (5 m � 0.53 mm � 0.17 mm)
and a programmed temperature vaporization (PTV) injector. 10 mg
of heavy oil was dissolved in 1000 mg of carbon disulfide, and the
injection volume was 1 mL. The PTV injector temperature program
started at 100 �C, increased at a rate of 15 �C/min to 430 �C, and held
for 22 min. The oven temperature program started at 40 �C,
increased at a rate of 10 �C/min to 430 �C, and held for 5 min. The
detector temperature was set at 430 �C. The data acquisition fre-
quency was 50 Hz.

2.4. HRMS analysis

HRMS is performed using the Orbitrap Fusion MS instrument
manufactured by Thermo Fisher Scientific in the United States. It is
equippedwith an ESI ion source and operated in negative-ionmode
or positive-ion mode. The preparation and ionization modes for



J.-X. Wu, S.-F. Li, Q.-F. Li et al. Petroleum Science 21 (2024) 3612e3620
different compound categories are shown in Table 1. The sample
under investigation is directly injected into the ESI source via an
injection pump at a flow rate of 5 mL/min. The sheath gas flow rate is
set at 5.0 Arb, the auxiliary gas flow rate is set at 2.0 Arb, and the
temperature of the ion transfer tube is maintained at 300 �C. The
mass range for data acquisition is m/z 150 to 1000, with the Auto-
matic Gain Control (AGC) value set at 5.0 � 105, and an accumu-
lation time of 100 ms. Data processing was described elsewhere
(Shi et al., 2013).
2.5. Semi-quantitative analysis

Semi-quantitative analysis of the molecular composition of
heavy oil was conducted referring to previously reported semi-
quantitative methods of petroleum fractions (Li et al., 2023). The
semi-quantitative analysis scheme for the molecular composition
of heavy oil is shown in Fig. 1. All the molecules in the heavy oil
belong to six compound categories: saturated hydrocarbons, aro-
matic hydrocarbons, acidic oxygen compounds, sulfur compounds,
basic nitrogen compounds, and neutral nitrogen compounds. After
derivatization with RICO, the saturated hydrocarbons composition
is analyzed by eESI Orbitrap MS. The aromatic hydrocarbons
composition is obtained by sulfonation treatment of the heavy oil
followed by eESI Orbitrap MS analysis. The composition of acidic
oxygen compounds and neutral nitrogen compounds can be
directly analyzed by eESI Orbitrap MS. The sulfur compounds
composition is obtained by methylation treatment of the heavy oil
followed by þESI Orbitrap MS analysis. The composition of basic
nitrogen compounds is also directly analyzed by þESI Orbitrap MS.
By following these steps, the complete molecular composition of
the heavy oil can be obtained.

To further obtain quantitative results of the heavy oil molecules,
a quantitative process begins with nitrogen compounds with
complex elemental compositions. According to the content of
neutral nitrogen and basic nitrogen, the content of element N is
respectively allocated to each compound molecule containing
neutral nitrogen and basic nitrogen, using the relative abundance
from HRMS. Once the composition of nitrogen compounds is
quantitatively analyzed, the total mass of elements C, H, O, and S in
these compounds can be determined. Next, quantitative analysis of
sulfur compounds is carried out. It involves subtracting the sulfur
content in nitrogen compounds from the total sulfur content, fol-
lowed by distribution based on the relative abundance from HRMS
of sulfur compounds. This process yields the quantitative compo-
sition of sulfur compounds. Subsequently, the molecular composi-
tion of acidic oxygen compounds is quantitatively analyzed. By
subtracting the oxygen content in nitrogen compounds and sulfur
compounds from the total oxygen content, and using the same
distribution method, the quantitative results of the molecular
composition of acidic oxygen compounds can be obtained. Finally,
for saturated hydrocarbons and aromatic hydrocarbons, their mo-
lecular compositions cannot be determined directly through
elemental allocations as they consist only of elements C and H.
However, based on the results of quantitative analysis of
Table 1
The preparation and ionization modes of different compound categories.

Category Pretreatment method Diluent solven

saturated hydrocarbons RICO 1:3
aromatic hydrocarbons sulfonation 4:1
acidic oxygen compounds needless 1:3
sulfur compounds methylation 1:1
basic nitrogen compounds needless 1:1
neutral nitrogen compounds needless 1:3
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heteroatomic compounds, the proportions of saturated hydrocar-
bons and aromatic hydrocarbons in the heavy oil can be deter-
mined. With knowledge of the mass ratio between saturated
hydrocarbons and aromatic hydrocarbons, quantitative analysis of
their molecular compositions can be achieved based on their
relative abundance from HRMS. Here, the mass ratio of saturates
and aromatics in the SARA separation is approximated as the mass
ratio of saturated hydrocarbons and aromatic hydrocarbons in
heavy oil. This is then used in the quantitative analysis system to
calculate and ultimately obtain the quantitative results of the mo-
lecular composition of heavy oil.

The semi-quantitative results of the molecular composition of
heavy oils obtained from the aforementioned method are not ac-
curate quantitative results. The following points need to be
explained.

(1) This method involves multiple preprocessing steps, and oil
samples with a high content of light fractions may experi-
ence significant mass loss during the processing, making it
unsuitable for quantitative analysis using this method.

(2) This method equates the HRMS intensity of different mole-
cules within the same compound type to their true abun-
dance. This means that the response of mass spectrometry to
different molecules within the same compound type is not
taken into consideration.

(3) For compounds with multiple heteroatoms, such as N2 and
N1O2 species, they may undergo ionization in both positive
ESI and negative ESI modes, resulting in repetitive quantifi-
cation calculations for these compound species.
3. Results and discussion

3.1. Bulk properties

Table 2 presents the macroscopic properties of the four heavy
oils: Xinjiang-P601, Henan-L3511, Shengli-J8, and Shengli-C373.
The viscosity of these heavy oils at 50 �C is above 1500 mPa,s,
and their TAN values exceed 3mgKOH/g, indicating that they are all
high TAN value heavy oils. Xinjiang-P601 even has a TAN value as
high as 11.77 mgKOH/g. High viscosity and high TAN value are
common characteristics of these heavy oils. However, there are
significant differences in the distribution of the SARA and
elemental composition among them. The saturates content of
Xinjiang-P601 is close to 60 wt%, while Shengli-C373 only has
slightly over 25 wt%. Both Xinjiang-P601 and Henan-L3511 have
low asphaltene contents, below 0.2 wt%, whereas Shengli-C373 has
a high asphaltene content of 7.69 wt%. The H/C ratio of Xinjiang-
P601 exceeds 1.7, while the H/C ratio of Shengli-C373 in the
eastern region is around 1.6, consistent with previous reports
(Zhang et al., 2020). Shengli-C373 has a sulfur content of nearly
5 wt%, while the sulfur content of other heavy oils is below 0.5 wt%.
The oxygen content of these heavy oils is all above 0.5 wt%, with
Xinjiang-P601 having a high oxygen content of 1.91 wt%. This may
be related to their high acid values.
t (Toluene: Methanol, V:V) Concentration, mg/mL ESI mode

0.40 negative
0.04 negative
0.20 negative
0.01 positive
0.20 positive
0.20 negative
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Fig. 1. Semi-quantitative analysis scheme of molecular composition of heavy oil based on compound categories.

Table 2
Bulk properties of the four heavy oils.

Xinjiang-P601 Henan-L3511 Shengli-J8 Shengli-C373

Viscosity, 50 �C mPa,s 3033 1665 1864 6883
TAN, mgKOH/g 11.77 4.91 3.87 3.11
Saturates, wt% 58.20 45.79 44.86 25.28
Aromatics, wt% 19.73 22.91 24.85 39.68
Resins, wt% 20.31 31.19 28.17 29.00
Alsphaltens, wt% 0.19 <0.05 1.32 7.69
H/C 1.72 1.68 1.65 1.57
S, wt% 0.22 0.27 0.31 4.98
N, wt% 0.25 0.64 0.75 0.73
O, wt% 1.91 1.31 0.57 0.98
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The simulated distillation analysis based on high-temperature
gas chromatography provides the relationship between boiling
point and yield for heavy oils. Fig. 2 shows the distillation curve
distribution of the four heavy oils. At the same boiling point tem-
perature, Xinjiang-P601 oil has the highest yield. Henan-L3511
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Yi
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Xinjiang-P601
Henan-L3511
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Fig. 2. Boiling point-yield curves of the heavy oils by simulated distillation.
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shows a significant increase in yield around 430 �C, while Shengli
heavy oils have the lowest yield. It is evident that the initial boiling
points of these heavy oils are all above 200 �C. Comparing with the
boiling point information of normal paraffins, it can be inferred that
these heavy oils contain almost no compounds with carbon
numbers below C11. This characteristic allows us to conduct mo-
lecular composition analysis of the heavy oils without having to
overly consider the uncertainty interference caused by easily vol-
atile light components on the semi-quantitative results.

3.2. Semi-quantitative molecular composition

Fig. 3 shows the molecular composition analysis results of
Shengli-J8 heavy oil based on compound categories. HRMS pro-
vides the accurate elemental composition information (i.e., mo-
lecular formula) of compounds. Additionally, the analysis results of
molecular composition based on compound categories inherently
carry structural information about functional groups. Accordingly,
we can determine the main structural information of different
category of compounds based on the HRMS analysis results. For
example, saturated hydrocarbons with double bond equivalence
(DBE) ¼ 0 correspond to linear alkanes, and other DBE values
correspond to cycloalkanes with different naphthenic ring
numbers. The DBE value of aromatic hydrocarbons starts from 4,
corresponding to alkylbenzenes. In acidic oxygen compounds, the
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DBE value of O2 compounds starts from 1, generally corresponding
to chain carboxylic acids, whereas higher DBE values represent
monocarboxylic acids with different naphthenic ring numbers.

The independent characterization of different categories greatly
eliminates the ionization suppression effects between them. A
semi-quantitative analysis of the molecular composition of heavy
oil has been achieved through the rational allocation of organic
element content and macroscopic component content in the mo-
lecular composition analysis results (Li et al., 2023). This provides a
quantitative representation of thousands of molecules in heavy oil,
and each molecule in different categories undergoes semi-
quantitative analysis. The enormous number of molecules detec-
ted in each heavy oil makes it challenging for us to directly un-
derstand themolecular composition characteristics of the heavy oil.
This requires statistical analysis of the semi-quantitative data on
the molecular composition of the heavy oil. The analysis data of the
molecular composition of heavy oil consists of six categories. The
sum of the contents of all the molecules within each category
represents the proportion of different categories in the heavy oil. A
pie chart depicting the mass proportion of the six categories in
Shengli-J8 heavy oil is also displayed in Fig. 3.

The category attribution of each molecule in the semi-
quantitative results of heavy oil molecular composition is clear.
This allows us to separately analyze the distribution of the content
of different categories based on the carbon number and DBE values,
giving rise to the carbon number-category abundance diagram and
the DBE-category abundance diagram for heavy oil. These statistical
diagrams can help us better understand the molecular composition
3616
characteristics of heavy oil. Fig. 4 illustrates the aforementioned
three types of statistical diagrams for different semi-quantitative
data of heavy oil. Saturated hydrocarbons are the main com-
pounds in Xinjiang-P601, Henan-L3511, and Shengli-J8, with satu-
rated hydrocarbons accounting for nearly 50 wt% of Xinjiang-P601.
The content distribution of saturated hydrocarbons in Xinjiang and
Henan heavy oils is more evenly distributed across carbon
numbers, with Xinjiang heavy oil exhibiting a wider distribution
range at higher carbon numbers. On the other hand, the carbon
number distribution range of saturated hydrocarbons in Shengli-J8
is narrower and primarily concentrated around C30. Xinjiang-P601
and Shengli-J8 have higher content of aromatic hydrocarbons
before C30, while the content range of aromatic hydrocarbons in
Henan-L3511 heavy oil is broader and can reach above C40.
Xinjiang-P601 has the highest acid value and oxygen content, with
acidic oxygen compounds accounting for up to 23 wt%, primarily
composed of naphthenic acids with 2e4 rings. Shengli-C373 has an
extremely high sulfur content, with sulfur compounds accounting
for nearly 50 wt% of the total heavy oil mass. Both Shengli-C373 and
Shengli-J8 show high compound abundances around C30, exhib-
iting typical structure characteristics of steroids and hopanes. The
high abundance of sulfur compounds in Shengli-C373 seems to be
the product of sulfur elements combining with these special hy-
drocarbon skeletons in the form of thiolane (Wu et al., 2019).

3.3. Particularity of the heavy oil on molecular composition

The semi-quantitative analysis of molecular composition of



Carbon number

M
as

s 
pe

rc
en

ta
ge

, %

0

1

2

3

4

5

6

12 16 20 24 28 32 36 40 44 48 52 56 60

Carbon number

M
as

s 
pe

rc
en

ta
ge

, %

0

1

2

3

4

5

6

Carbon number

M
as

s 
pe

rc
en

ta
ge

, %

0

1

2

3

4

5

6

Carbon number

M
as

s 
pe

rc
en

ta
ge

, %

0

1

2

3

4

5

6

7

Mass percentage, %

D
BE

0 2 4 6 8 10 12 14 16
0
2
4
6
8

10
12
14
16
18
20
22
24

Mass percentage, %

D
BE

0 2 4 6 8 10 12 14 16
0
2
4
6
8

10
12
14
16
18
20
22
24

Mass percentage, %

D
BE

0 2 4 6 8 10 12
0
2
4
6
8

10
12
14
16
18
20
22
24

Mass percentage, %
D

BE
0 2 4 6 8 10 12

0
2
4
6
8
10
12
14
16
18
20
22
24

Xinjiang-P601

Henan-L3511

Shengli-J8

Shengli-C373

Saturated
hydrocarbons

49%
Aromatic hydrocarbons

17%

Acidic oxygen
compounds

23%

Sulfur
compounds

3%

Basic nitrogen
compounds

2%

Neutral nitrogen
compounds

6%

Saturated
hydrocarbons

44%
Aromatic hydrocarbons

22%

Acidic oxygen
compounds

13%

Sulfur
compounds

2%

Basic nitrogen
compounds

6%

Neutral nitrogen
compounds

13%

Saturated
hydrocarbons

43%

Aromatic hydrocarbons
24%

Acidic oxygen
compounds

7%

Sulfur
compounds

2%

Basic nitrogen
compounds

6%

Neutral nitrogen
compounds

18%

Saturated hydrocarbons
6% Aromatic

hydrocarbons
10%

Acidic oxygen
compounds

13%

Sulfur compounds
49%

Basic nitrogen
compounds

6%

Neutral nitrogen
compounds

16%

Neutral nitrogen compounds
Basic nitrogen compounds
Sulfur compounds
Acidic oxygen compounds
Aromatic hydrocarbons
Saturated hydrocarbons

12 16 20 24 28 32 36 40 44 48 52 56 60

12 16 20 24 28 32 36 40 44 48 52 56 60

12 16 20 24 28 32 36 40 44 48 52 56 60

Neutral nitrogen compounds
Basic nitrogen compounds
Sulfur compounds
Acidic oxygen compounds
Aromatic hydrocarbons
Saturated hydrocarbons

Neutral nitrogen compounds
Basic nitrogen compounds
Sulfur compounds
Acidic oxygen compounds
Aromatic hydrocarbons
Saturated hydrocarbons

Neutral nitrogen compounds
Basic nitrogen compounds
Sulfur compounds
Acidic oxygen compounds
Aromatic hydrocarbons
Saturated hydrocarbons

Fig. 4. Statistical plots of semi-quantitative analysis of the molecular compositions of Xinjing-P601, Henan-L3511, Shengli-J8 and Shengli-C373: pie chart of the mass proportion of
different compound categories (left); bar chart of carbon number-category abundance (center); bar chart of DBE-category abundance (right).

J.-X. Wu, S.-F. Li, Q.-F. Li et al. Petroleum Science 21 (2024) 3612e3620
heavy oil enables the revelation of its chemical composition char-
acteristics that contribute to its viscosity at the molecular level.
Fig. 5 compares the semi-quantitative analysis results of the mo-
lecular composition between Shengli-J8 and a conventional Shengli
crude oil. While both these two oil samples are extracted from the
Shengli oilfield, the differences in their molecular composition are
quite significant. Shengli-J8 has alkanes (DBE ¼ 0) content slightly
above 2 wt%, with the saturated hydrocarbons primarily composed
of steranes near C30. In contrast, the conventional Shengli crude oil
has alkanes content of over 15 wt%, exhibiting an absolute domi-
nance in its saturated hydrocarbons. The aromatics in Shengli-J8
are predominantly distributed in the high carbon number range
of C15eC30 and high DBE range of 5e14. Conversely, the aromatics
in the conventional Shengli crude oil are mainly distributed in the
low carbon number range of C8eC15 and low DBE range of 4e8.

The cyclic structure serves as a carrier for viscosity. The absence
of alkanes leads to the saturated hydrocarbons, which are the most
abundant compound category in Shengli-J8, are predominated by
multi-ring structures with short side chains, such as steranes. This
3617
results in an increase in viscosity. In addition, aromatic hydrocar-
bons, as the secondary major compound category in Shengli-J8, are
dominated by high molecular weight and highly condensed
structures. This further increases the viscosity of Shengli-J8. The
differences in molecular composition effectively reveal the reasons
that contribute to the high viscosity of heavy oil from a chemical
composition perspective.

The semi-quantitative analysis of the molecular composition
reveals that the mass fraction of non-polar categories, such as hy-
drocarbons and sulfur compounds, in heavy oil is all above 60%.
This obscures the molecular composition characteristics of polar
heteroatomic categories. Fig. 6 illustrates the variation of the con-
tent of major polar species with carbon number and DBE in Shengli-
J8 and a conventional Shengli crude oil. The highest mass distri-
bution of polar species in Shengli crude oil is around C25, while in
Shengli-J8, it is around C32. In terms of DBE, the mass fraction of
polar species in Shengli-J8 is higher in the high DBE range (DBE�9),
while in Shengli crude oil, it is higher in the low DBE range
(DBE<9). Higher carbon numbers and DBE values are the molecular
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composition characteristics of polar species in Shengli-J8, and also
the factors contributing to its high viscosity.

The semi-quantitative results of the molecular composition of
each heavy oil include the quantity information of thousands of
molecules. Constructing a representative molecule set is beneficial
for further applications of the analytical results, such as simulating
the interactions between heavy oil molecules and predicting the
viscosity of heavy oil. Fig. 7 illustrates the characteristic molecule
sets of the four heavy oils. The molecule sets contain representative
molecules with the highest mass content of different compound
3618
categories. Xinjiang-P601 exhibits the highest content of long-
chain cycloalkanes and dicarboxylic acids. Henan-L3511 shows a
significant amount of nitrogen-containing carboxylic acids.
Shengli-J8 has the highest content of C30 steranes, while Shengli-
C373 has the highest content of sulfur-containing steranes and
significant levels of sulfur-containing carboxylic acids. Overall, the
compound molecular composition in different heavy oils is essen-
tially the same, with themain differences lying in the varying levels
of different categories of molecules.



Fig. 7. Characteristic molecular sets of Xinjiang-P601, Henan-L3511, Shengli-J8, and Shengli-C373 based on semi-quantitative analysis of molecular composition. The numbers
represent the mass percentage of each molecule.
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4. Conclusion

This study utilizes derivative pretreatment and HRMS equipped
with an ESI source to achieve the molecular composition of six
compound categories in heavy oil. By incorporating macroscopic
quantitative data into the quantitative process, semi-quantitative
analysis of molecular composition of typical heavy oils from
western, central, and eastern China has been ultimately accom-
plished. Saturated hydrocarbons are the dominant compound
category in Xinjiang-P601, Henan-L3511, and Shengli-J8, with
Xinjiang-P601 exhibiting a wide range of carbon numbers and a
significant abundance of cyclic alkanes beyond C40. In contrast,
Shengli-J8 has a narrow distribution of saturated hydrocarbon
carbon numbers, primarily concentrated around C30. Shengli-C373
has a high sulfur content, with sulfur-containing compounds ac-
counting for close to 50wt% of its composition, mainly composed of
cyclic sulfides.

The absence of linear alkanes and low-molecular-weight aro-
matics is the primary characteristic that distinguishes Shengli-J8
heavy oil from conventional Shengli crude oil in terms of molecu-
lar composition, and it is also the chemical composition responsible
for the high viscosity of heavy oil. The composition of the charac-
teristic molecular set of heavy oil indicates that the molecular types
of different heavy oils are similar, and the differences in the pro-
portions of different types of molecules are themain reasons for the
variations in heavy oil properties. The semi-quantitative analysis of
heavy oil molecular composition reveals the compositional char-
acteristics of heavy oil at the molecular level, and the analysis re-
sults are expected to be used in heavy oil molecular simulation to
further understand the mechanisms behind the high viscosity of
the heavy oil.
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