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a b s t r a c t

The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the
production forecasting is influenced by geological parameters and engineering parameters. Therefore, to
quantitatively evaluate the relative importance of model parameters on the production forecasting
performance, sensitivity analysis of parameters is required. The parameters are ranked according to the
sensitivity coefficients for the subsequent optimization scheme design. A data-driven global sensitivity
analysis (GSA) method using convolutional neural networks (CNN) is proposed to identify the influencing
parameters in shale gas production. The CNN is trained on a large dataset, validated against numerical
simulations, and utilized as a surrogate model for efficient sensitivity analysis. Our approach integrates
CNN with the Sobol' global sensitivity analysis method, presenting three key scenarios for sensitivity
analysis: analysis of the production stage as a whole, analysis by fixed time intervals, and analysis by
declining rate. The findings underscore the predominant influence of reservoir thickness and well length
on shale gas production. Furthermore, the temporal sensitivity analysis reveals the dynamic shifts in
parameter importance across the distinct production stages.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

As one of the unconventional natural gas resources, the shale
gas development has gained dramatic amount of attentions
worldwide (Middleton et al., 2017; Shu et al., 2019; Wang and Li,
2017). The shale gas is originated from the organic-rich mudstone
or shale that is used to be considered as a source rock not a reser-
voir rock for oil and gas. The pore throat of the shale matrix is at the
micro-scale or even nano-scale with complex structures (Li W.
et al., 2016; Mustafa et al., 2021), and the permeability is
extremely small with the order of nano-Darcy (Liehui et al., 2019). It
is not economically feasible to produce shale gas in its natural
conditions. Due to the advancement of horizontal well drilling and
hydraulic fracturing techniques, they create the pathway for the
shale gas flow from the matrix to the wellbore by increasing the
troleum Resources and Engi-
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permeability of the stimulation zones (King, 2011). The extended
natural fractures and induced hydraulic fractures form the intricate
fracture network in the shale matrix (Wang et al., 2009). The
storage form of shale gas can be free gas in the void space in the
matrix pores and fracture, adsorbed gas on the walls of the pores,
and dissolved gas in the kerogen (Javadpour et al., 2010). Because of
the multi-scale porous media and the distinctive storage mecha-
nisms, the flowmechanisms of the shale gas are complex (Yu et al.,
2016), and the amount of influencing factors of the shale gas pro-
duction is much larger than that of conventional gas reservoirs.
Therefore, it is necessary to develop a method to efficiently identify
the dominant influencing parameters.

There are two fundamental ways to create the mapping from
shale reservoir parameters and shale gas production. One is the
physics-driven model that is targeted to find the hidden flow rules
behind the shale gas production. The analytical, semi-analytical
method, meshfree method, and edge-based green element
method can be used to simulate the shale gas production process.
These solutions provide the basis for pressure transient analysis
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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(PTA) or rate-transient analysis (RTA) for shale gas production for
fractured horizontal well (Ajayi et al., 2011; Cinco-Ley and
Samaniego-V., 2007; Gringarten et al., 2007; Gringarten and
Ramey, 1973; Guppy et al., 2007). Chen et al. (2018) considered
the hydraulic fracture conductivity, cluster spacing, and the
permeability of stimulated zone and performed a pressure-
transient analysis in the shale gas reservoir developed through a
hydraulic fractured horizontal well. The complex fracture geometry
in the shale gas reservoir is necessary to be accounted for in the
shale gas production solution. Yang et al. (2016) developed a shale
gas model to consider real gas transport and complex non-planar
fracture networks, and the rate transient behavior is systemati-
cally analyzed. Yu et al. (2017) developed a semi-analytical solution
for shale gas reservoirs by dividing fractures into small segments to
account for the complex non-planar fracture geometry. However, it
is challenging to use these analytical methods to capture the
characteristics of the reservoir heterogeneity, multiphase gas and
water flow, and fracture geometry with arbitrary orientation. The
shale gas numerical simulation method can be more flexible to
incorporate these fracture and flow characteristics. Rubin (2010)
used the local grid refinement method with the structured grid to
model the hydraulic fractured reservoir. To increase the accuracy
and efficiency of the simulation, small grid cells are placed on the
fractures and the grid spacing is logarithmically spaced in the
stimulated reservoir volume. Due to the limitation of the grid
structures, the local refinement method can only simulate the shale
gas reservoir with orthogonal bi-wing fractures. To represent the
complex fracture geometry in the real fractured condition, the
discrete fracture models are used to simulate the shale gas pro-
duction with unstructured gridding (Karimi-Fard et al., 2007).
Wang and Shahvali (2015) used discrete fracture modeling to
simulate the shale gas production with non-linear flow mecha-
nisms, and the centroidal voronoi tessellation (CVT) is developed to
characterize the transient flow behavior near hydraulic fractured
well. Even though the unstructured gridding method greatly ad-
vances the characterization of the complicated fracture distribu-
tion, its implementation is associated with an expensive
computational cost. Moinfar et al. (2013) developed the embedded
discrete fracture model (EDFM) to improve the efficiency. This
method can embed the fracture planes directly into the structured
grid system, thus it can avoid the complicated unstructured
gridding of the shale reservoir and account for the real geometry of
the hydraulic fractures. The EDFM simulation method can be in-
tegrated with the existing commercial software in a non-intrusive
way. Due to the flexibility of the EDFM method to deal with the
fracture geometry, it has been used widely in the simulation of
unconventional oil and gas reservoirs. Dai et al. (2019) used an
unstructured quadrangular grid-based EDFM method to simulate
gas production in an irregularly shaped naturally fracture shale
reservoir. Xue et al. (2020) used the EDFM-based particle filter
method to perform automatic history matching of shale gas res-
ervoirs. Kim et al. (2021) developed a parameterization method for
EDFM so that the calibration efficiency can be improved.

With the development of the artificial intelligence algorithm,
the data-driven model that uses the observed data to obtain the
mapping between model parameters and shale gas production has
gained increasing attention (Xue et al., 2023a, 2023b). Lee et al.
(2019) used the long short-term-memory method to predict the
time-series shale gas production data. Vikara et al. (2020) used the
gradient-boosted regression tree (GBRT) method to estimate the oil
and gas productivity of theMarcellus shale and optimize the design
of the production well. Xue et al. (2023a, 2023b) developed a deep
learning model driven jointly by the decline curve analysis model
and production data for the production performance prediction of
gas wells. Huang et al. (2023) use graph neural networks (GNN) for
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production forecasting to identify the relationships between
injector-producer pairs and producer-producer pairs. The tradi-
tional progression of data-driven neural networks has predomi-
nantly concentrated on acquiring knowledge of mappings within
finite-dimensional Euclidean spaces. In more recent times, this
approach has been broadened to encompass neural operators,
which specialize in learning mappings across function spaces. In
the context of partial differential equations (PDEs), neural operators
are designed to adeptly learn the mapping from any functional
parametric correlation to the corresponding solution. Conse-
quently, they acquire proficiency in handling an entire spectrum of
PDEs, diverging from classical methods that are tailored to solving
specific instances of the equation. Wen et al. (2022) introduced
UeFNO, an optimized Fourier neural operator, demonstrating its
remarkable precision in addressing multiphase flow challenges,
especially in the context of CO2 geological storage. Yan et al. (2022)
developed a deep learning workflow based on Fourier neural op-
erators (FNO) to predict the pressure evolution of fluid flow in
large-scale 3D heterogeneous geological CO2 storage reservoirs. To
embody the physical consistency of deep learning, Raissi et al.
(2019) introduced the physics-informed neural network (PINN)
and employed the residuals of nonlinear partial differential equa-
tions to guide the training process using automatic differentiation.
They extended this approach to address both forward and inverse
problems. Wang et al. (2022) proposed a theory-guided convolu-
tional neural network (TgCNN) framework as a surrogate for sub-
surface flows with position-varying sink/source terms (well
locations), which is further utilized for well placement
optimization.

The flow mechanisms of shale gas are complex to be charac-
terized andmany factors can influence the production performance
of the shale gas. It is crucial to identify the influencing factors of the
shale gas production. Sensitivity analysis can be used to evaluate
the relative importance of the model parameters to the model
productions quantitatively. In general, sensitivity analysis can be
divided into categories, and they are local and global sensitivity
analysis. The local sensitivity analysis method is used to assess the
local influence of the input parameters on the model response. It is
usually evaluated by using gradients of the output to a given input
parameter while keeping the rest of the input parameters fixed. Yu
et al. (2014) performed a local sensitivity analysis of fracture ge-
ometry on the shale gas production by varying the half-length of
the hydraulic fractures. Deng et al. (2015) conducted the local
sensitivity analysis of the size of the stimulated reservoir volume
(SRV) region, property of the SRV region, fracture number, fracture
intervals, dimensionless fracture conductivity coefficient, inter-
porosity flow coefficient, storativity ratio and adsorption coeffi-
cient on type curves of pressure transient in shale gas reservoir. The
global sensitivity is used to explore the influencing level of all the
input parameters on the model response within all the reasonable
parameter ranges. The global sensitivity analysis is often conducted
through Monte Carlo simulation, and the computational efficiency
is low. Therefore, many researches have focused on the improve-
ment of global sensitivity analysis efficiency. Dai et al. (2014)
developed the polynomial chaos expansions method to express
the reservoir simulation response and used the probabilistic
collocation method to obtain the global sensitivity analysis results
efficiently. Luo et al. (2018) propose a correlation-based adaptive
localization scheme that does not rely on the physical locations of
the observations. Rezaei et al. (2020) developed a reduced-order
model (ROM) to improve the global analysis efficiency by replac-
ing the fully coupled poroelastic hydraulic fracture model with a
computationally efficient analytical model, and it found that the
mobility, production pressure, and fracture half-length are the
dominant factors.
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In contrast to conventional methodologies, this study proposes
an innovative data-driven global sensitivity analysis (GSA) tech-
nique employing a convolutional neural network (CNN) within the
deep learning framework to discern the pivotal parameters influ-
encing shale gas production, as shown in Fig. 1. The CNN, having
assimilated intricate data relationships, adeptly captures the input-
output mapping crucial for subsequent sensitivity assessments.
Additionally, the investigation introduces three distinctive sce-
narios for sensitivity analysis: an analysis of the production stage in
its entirety, an analysis conducted at fixed time intervals during the
production stage, and an analysis considering the production stage
through the lens of declining rates. This comprehensive method-
ology facilitates a nuanced comprehension of parameter sensitiv-
ities at various stages of shale gas production.

The rest of the paper is organized as follows. In Section 2, the
theoretical basis of the GSA and CNN are introduced. In Section 3,
the performance of CNN is validated against the embedded discrete
modeling method in shale gas production, and the CNN-based GAS
results are presented. Finally, the conclusions are drawn in the
Section 4.

2. Methodology

2.1. Global sensitivity analysis

The Sobol' method is a variance-based global sensitivity analysis
technique employed within a probabilistic framework (Sobol',
2001). Its objective is to partition the variance of a model's or
system's output into fractions that can be attributed to individual
input parameters or sets of parameters. In the context of the Sobol'
sensitivity analysis method, these fractions, whether originating
from a single parameter or the interaction of multiple parameters,
Fig. 1. The main struct
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are expressed as sensitivity indices (SI's) referred to as "Sobol'
indices". These indices represent the proportion of the total output
variance and can be utilized for both fixed-function (FF) and fixed-
point (FP) models. The appeal of variance-based sensitivity mea-
sures lies in their capacity to assess sensitivity across the entire
input space, making them a global method. Moreover, they are
well-suited for capturing sensitivity in nonlinear systems and
quantifying the impact of interactions in non-additive systems.

Suppose that f ð ,Þ is a square-integrable function defined in the
unit hypercube ½0;1�n, the output y can be expressed as

y ¼ f ðxÞ; (1)

where x is themodel input vector defined on an n-dimensional unit
hypercube:

Kn ¼fx : 0⩽xi⩽1; i¼1;…;ng: (2)

The function can be written as the summation of a set of
elementary functions with increasing dimensions by using Sobol'
decomposition (Sobol', 2001):

f ðx1;…; xnÞ ¼ f0 þ
Xn
i¼1

fiðxiÞ þ
X

1⩽i< j⩽n

fij
�
xi; xj

�þ/

þ f1;2;…;nðx1;…; xnÞ; (3)

where f0 is the constant. It is the mean value of the function, and
can be expressed as

f0 ¼
ð
Kn
f ðxÞdx: (4)
ure of this study.
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The univariate terms in the decomposed function can be
expressed as

fiðxiÞ ¼
ð
Kn�1

f ðxÞdx�i � f0; (5)

where the symbol “�” means the “complementary of”.
The total variance of the output function is

D¼Var½f ðxÞ� ¼
ð
Kn
f 2ðxÞdx � f 20 : (6)

By integrating the square of f ðxÞ function and using the orthogonal
property, the total variance can be decomposed by

D ¼
Xn
i¼1

Di þ
X

1⩽i< j⩽n

Dij þ/þ D1;2;…;n; (7)

where the partial variances in the summation can be written as

Di1 ;…;is ¼
ð
Ks
f 2i1;…;is

�
xi1 ;…; xis

�
dxi1 ;…;dxis : (8)

The Sobol' indices can be defined as the ratio of the partial variances
to the total variance as

Si1;…;is ¼Di1 ;…;is

�
D: (9)

The Sobol' index can work as a sensitivity measure to describe
how much total variance has been accounted for by the un-
certainties in the input parameters. The higher Sobol' indice values
mean the greater influences on the variation of the output. The
influence of the input variables can be ranked according to the
magnitude of the Sobol' index.

In practice, the Sobol' indices are computed through Monte
Carlo simulation. However, the computational cost to numerically
evaluate the integrals in the Sobol' I ndices is very high, especially
when the f ð ,Þ can not be efficiently solved. Much research has been
devoted to improving the computational efficiency of global
sensitivity.

2.2. Convolutional neural network

The convolutional neural network (CNN) is a deep learning
method designed to perform the image processing (LeCun et al.,
2008). It is derived from the traditional ordinary neural network,
which is made up of neurons with weights and biases as charac-
terization parameters. CNN can extract the important features
automatically from the grid-like arrangement data, such as images,
by reducing the computational complexity of setting up the
learning model.

There are three types of layers in the CNN architecture: the
convolutional layers, pooling layers, and fully-connected layers. The
convolutional layer is used to connect to a small local region of the
input through a scalar product between the weights and input
values. The small region of input connected by the convolutional
layer is referred to as the receptive field. Only the input values
within the receptive field can affect the extracted features of the
convolutional neural network. The weights form a learnable con-
volutional kernel, which is defined to convolve across the spatial
dimensionality of the input to generate a feature map. All the
spatial locations share the same convolutional kernel, which
greatly reduces the number of parameters required by the con-
volutional layer. This technique is called “weight sharing” (Nowlan
and Hinton, 2018). The convolution kernel is overlapped on top of
the input matrix, the product can be computed between the
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numbers at the same location in the kernel and the input, and a
single number can be obtained by summing these products
together. By learning the kernel, a specific feature at a given spatial
position of the input will be highlighted. Many kernels can be used
to extract the feature maps from different perspectives. All the
generated feature maps are stacked along the depth dimension to
form the fill output from the convolutional layer.

Suppose that the input tensor for a specific convolutional layer is

x2RM1�M2 ; (10)

where M1 and M2 are the dimensions of the input; and xi;j is the
input value at the position ði; jÞ.

The convolutional kernel is denoted as

u2Rk1�k2 ; (11)

where k1 and k2 are the dimensions of the input; wðc; dÞ indicates
the weight value at the position ðc;dÞ in the convolutional neural
network. The variable ui;j is the value of the feature map, and it can
be expressed as

ui;j ¼
Xk1
c¼1

Xk2
d¼1

xi,s1�1þc;j,s2�1þd,wc;d þ b: (12)

After passing through the convolutional and pooling layers, the
values in a feature map are redefined to a vector and used for the
interpretation of the features.

uj ¼
Xn
i¼1

xi,wi;j þ bj; (13)

where xi is the input vector; wi;j is the weight; and bj is the bias.
The learning process is performed using the error back-

propagation method, which uses the gradient descent to update
the weights. The training process consists of minimizing the cost
function by adjusting the weights according to the following
equation

wtþ1
i ¼ wt

i � h
vC
vwt

i
; (14)

where wt
i is the i weight of the network at the current time t; h is

the learning rate; and C is the mean-squared loss between the true
data and predicted data. In order to avoid this overfitting in its
learning, we use the dropout technique. It consists in withdrawing
randomly some units from the neural network (Srivastava et al.,
2014). In this work, the CNN provides a forward prediction model
of the input parameters to the output values of the shale gas pro-
duction capability through its powerful nonlinear fitting capability
trained on a large amount of data, and also serves as a surrogate
model for the subsequent sensitivity analysis.
3. Results and discussion

3.1. Construction of CNN-based shale gas production model

The establishment of the dataset utilized for training the data-
driven model plays a pivotal role in the realm of deep learning. A
copious volume of data characterized by high quality enhances the
model's learning efficacy and augments its generalization capabil-
ities on test datasets that remain uninvolved in the model training
process. However, practical constraints arise in the context of oil-
field production and development. The availability of oilfield blocks



Table 1
Basic numerical model parameters.

Key words Parameter Minimum Maximum Unit

Thick Reservoir thickness 3 11 m
Init-pre Initial pressure 350 550 bar
Init-s-w Initial water saturation 0.15 0.35 /
Mat-perm Matrix permeability 10�5 10�3 mD
Mat-poro Matrix porosity 0.02 0.08 /
Lang-v Langmuir volume 5 15 m3/m3

Lang-p Langmuir pressure 50 100 bar
Srv-perm SRV permeability 10�3 0.1 mD
Srv-poro SRV porosity 0.1 0.16 /
Fra-h-len Fracture half length 150 250 m
Fra-con Fracture conductivity 0.2 2 mD m
Frac-num Fracture number 10 100 /
Well- len Horizontal wellbore length 1000 2000 m
BHP Bottom hole pressure 10 100 bar
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and the number of wells drillable within a specific block are
inherently limited. Consequently, obtaining an extensive dataset
for the training phase, encompassing fracturing and production
data, becomes impractical. To address this limitation for theoretical
validation, this study employs reservoir numerical simulation
software to generate shale gas production processes, thereby
establishing a comprehensive dataset for training the convolutional
neural network.

Based on the geological properties and engineering parameters
of shale gas reservoirs, a numerical model of fracturing horizontal
wells in shale gas reservoirs is established through reservoir
simulation software, as shown in Fig. 2. A fracturing horizontal well
is set up in the model, distributed in the middle region of the tar-
geted area. The hydraulic fractures are explicitly characterized by
the embedded discrete fracture model (EDFM) method, and the
constant pressure working schedule is adopted. The shale gas is
produced with constant bottom-hole pressure for 20 years. The
specific value ranges are shown in Table 1.

The model reservoir is assumed to be homogeneous, featuring
isotropic permeability. Employing an embedded discrete fracture
model, artificial fractures are simulated, with all fractures evenly
distributed and positioned perpendicular to the horizontal well
section. The SRV area is configured to be incompletely connected,
signifying that each hydraulic fracture is associated with a con-
nected rectangular stimulation area; however, these individual
rectangular stimulation areas are not interconnected. By selecting
different combinations of characteristic parameters within their
corresponding ranges, a multitude of geological models can be
derived from the foundational geological model. Subsequently,
through numerical simulation, various sets of shale gas production
characteristics corresponding to these geological models can be
obtained. To address potential issues stemming from random
sampling, such as the occurrence of repeated parameter combina-
tions or incomplete coverage of certain value ranges, this study
employs Latin hypercube sampling to procure 5000 distinct sets of
parameter combinations. Subsequently, the dataset is partitioned
into a training set, validation set, and test set, comprising 4000,
500, and 500 instances, respectively.

The convolutional neural network (CNN) processes input data
consisting of 14 feature parameters. The convolutional layer is
configured to extract key features, while the pooling layer reduces
the size of the extracted feature data. Subsequently, the flattened
layer reshapes the data into a 1-D array, and the fully connected
layer makes predictions for the output. The network's structural
configuration often requires hyperparameter optimization to ach-
ieve optimal predictive performance. This involves fine-tuning
parameters, including the number of convolutional layers, the
size of convolutional kernels, the number of neurons in fully con-
nected layers, and the batch size. Fig. 3 illustrates the relative errors
associated with each parameter on the test set. Consequently, the
optimal configuration comprises two convolutional layers, with the
first layer featuring a kernel size of 3 and the second layer a kernel
size of 5. The fully connected layer is configured with 320 neurons,
and the batch size is set at 32. The final model is depicted in Fig. 4.
Fig. 2. The geological model of the shale gas reservoir.
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Furthermore, to quantitatively evaluate the test results, the
following two metrics are introduced. One is the relative error:

r ¼

���yt � yp
���

yt
; (15)

where the yt is reference value solved by the reservoir simulator
and the yp is predictions of CNN, respectively. This formula de-
termines the relative error between the actual value of the data set
and the predicted value of the model. In order to measure the
relative error of the entire test set, the average relative error of all
samples in the test set

mt ¼ 1
N

XN
i

ri; (16)

where N is the sample size of the test set; and mt represents the
relative error of the ith sample on the test set.

3.2. Evaluation of the CNN-based shale gas production

Fig. 5 illustrates the relative error of the test for the 125th,185th,
and 196th samples, showcasing the alignment between predicted
production curves and actual production data obtained from nu-
merical simulations. These instances, selected from the 500 test
cases, serve as representative examples. The relative error changes
depicted in Fig. 5(a) reveal that CNN's predicted results align well
with the stable production stage but exhibit deviations during the
production declining stage. Conversely, Fig. 5(b) indicates an
opposing trend, with CNN effectively capturing the declining stage
but experiencing an increase in relative error during the stable
production stage. Analyzing the relative error statistical distribu-
tion of the 500 samples on the test set based on Fig. 5(e), it is
observed that 99.6% of the samples exhibit a prediction error of less
than 20%, 88.4% of the samples have a prediction error of less than
10%, and more than half of the samples display a prediction error of
less than 5%. These results affirm the exceptional predictive capa-
bility of CNN in modeling production dynamics.

The investigation into the sensitivity of production to formation
parameters, fracturing parameters, and well parameters encom-
passes two tasks. Firstly, to validate the accuracy of the convolu-
tional neural network surrogate model, the distribution of
sensitivity coefficients for each parameter is compared using two
distinct production prediction methods: numerical simulation and
convolutional neural network. Secondly, the sensitivity coefficients
of the parameters are determined, and a ranking is established
based on the total sensitivity coefficients. This enables a



Fig. 3. The hyperparameter optimization of the CNN model.

Fig. 4. The final structure of the CNN model.
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comprehensive comparison and analysis of the sensitivity of shale
gas production to various parameters throughout the entire pro-
duction period and at different production stages.

3.3. Global sensitivity analysis of shale gas production

When employing the Sobol' method for sensitivity analysis, the
Sobol' series is typically utilized to select data samples. However,
the Sobol' series encounters the challenge of high repetition in
2480
sampling points. To mitigate the error rate in sensitivity coefficient
calculations, the sample set is divided using the Saltelli expansion
scheme of the Sobol' series. Sensitivity coefficients for 14 parame-
ters are computed based on 20 years of cumulative production, and
the parameters are ranked according to their total order sensitivity
coefficients, as depicted in Fig. 6. Notably, CNN demonstrates
relatively reliable accuracy and sensitivity coefficient trends for the
14 parameters when compared to numerical simulations. Fig. 7
reveals that with a sample set of 5000 and 5 parallel calculation
examples, the time consumption for sensitivity analysis using nu-
merical simulation is 80 times greater than that of CNN. Conse-
quently, CNN proves to be a viable surrogate model for numerical
simulation, particularly in subsequent sensitivity analysis stages.
Among the input parameters, the reservoir thickness and well
length exert the most significant influences on shale gas produc-
tion. This can be attributed to the fact that reservoir thickness de-
termines geological reserves, with larger reserves leading to greater
production. Similarly, the well length significantly impacts the
hydraulic fractured area, with a larger fractured area resulting in
increased production. The initial water saturation, porosity of the
SRV area, and the number of fracture segments exhibit moderate
effects on production. These parameters influence reserves and the
fluid flow capability in the SRV area to some extent. In contrast, the



Fig. 5. The CNN model predictions results. (a), (b), and (c) depict predictions for the 125th, 186th, and 190th samples, respectively. The collective performance is summarized in (d),
representing the average error across all samples. Additionally, (e) presents a histogram showcasing the distribution of errors.

Fig. 6. Comparison of sensitivity coefficients for sensitivity analysis using CNN and
numerical simulation.

Fig. 7. Time consumed for sensitivity analysis using CNN and numerical simulation for
the distribution of 5000 samples.
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impact of matrix porosity, permeability, and Langmuir adsorption
parameters on production is comparatively weak, with Langmuir
pressure being relatively small compared to other parameters. This
is attributed to the small contribution of gas production from the
peripheral matrix area and the adsorption effect in this scenario,
resulting in a less sensitive response to these specific parameters.

3.4. Global sensitivity change at different production stages divided
by the fixed time interval

The production stage is segmented into two distinct time in-
tervals: the 0e8 year period, characterized as the declining stage,
and the 9e20 year period, denoted as the stable stage. As depicted
2481
in Fig. 8, throughout both stages, the predominant sensitive pa-
rameters influencing shale gas production remain the reservoir
thickness and well length. During the declining stage, production
exhibits higher sensitivity to reservoir thickness, initial formation
pressure, and initial water saturation. Conversely, in the stable
production stage, the sensitivity of parameters such as fracture
half-length, bottomhole flow pressure, Langmuir volume, matrix
permeability, and porosity becomes notably stronger. The sensi-
tivity coefficients of two-thirds of the parameters exhibit an in-
crease from the declining stage to the stable production stage.
Notably, the sensitivity coefficients of reservoir thickness, the
number of fracture segments, initial formation pressure, initial
water saturation, and porosity of the SRV zone decrease. Among
these, the sensitivity of production to initial formation pressure and



Fig. 8. Comparison of total order sensitivity coefficients for declining and stable pro-
duction stages based on fixed time interval.

Fig. 9. Comparison of total order sensitivity coefficients for declining and stable pro-
duction stages based on decline rate.
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initial water saturation demonstrates the most significant shift
from strong to weak, with sensitivity coefficients reduced by more
than 70%, resulting in a one-level decrease in sensitivity ranking.
Parameters exhibiting a substantial percentage increase in sensi-
tivity include bottom-hole flow pressure, matrix porosity, matrix
permeability, and Langmuir volume, all experiencing an increase of
no less than 150%. In the stable production stage, bottom-hole flow
pressure not only influences the production pressure difference but
also impacts the gas resolution rate, given the proximity of for-
mation pressure to the bottom-hole flow pressure. Additionally, the
contribution of the peripheral matrix area and gas adsorption to
total production gradually increases, amplifying the influence of
the four parameters on production during the stable production
stage.
3.5. Global sensitivity change at different production stages divided
by the decline rate

The production stage is categorized based on the monthly pro-
duction decline rate. Specifically, when the decline rate is greater
than or equal to 1.5%, it is considered the declining stage;
conversely, when the decline rate is less than 1.5%, it is identified as
the stable production stage. As illustrated in Fig. 9, the primary
sensitive parameters influencing production in both stages remain
consistent and include reservoir thickness, the number of fracture
segments, fracture conductivity, and well length. During the
declining stage, production exhibits higher sensitivity to reservoir
thickness, initial formation pressure, and initial water saturation. In
contrast, during the stable production stage, the sensitivity of pa-
rameters such as fracture half-length, bottom-hole flow pressure,
Langmuir volume, matrix permeability, and porosity becomes
notably stronger. Similar to the change in parameter sensitivity
when divided by fixed production time, 5% of the parameter
sensitivity coefficients increased from the declining stage to the
stable production stage, where the sensitivity of production to
initial formation pressure and initial water saturation changed from
strong level to weak level in the most significant way, with an
average decrease of 90% in sensitivity coefficients and the sensi-
tivity ranking decreased by one level. The parameters with
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significantly increased sensitivity include well bottom flow pres-
sure, Langmuir volume, matrix porosity, and permeability, with an
increase of no less than 300%.
4. Conclusions

This study presents a pioneering approach to data-driven global
sensitivity analysis (GSA) for assessing parameters influencing
shale gas production. The innovation lies in the integration of
convolutional neural networks (CNN) with the Sobol' method,
providing an efficient and robust methodology for sensitivity
analysis. The CNN, trained on a comprehensive dataset, serves as a
powerful surrogate model, capturing intricate relationships be-
tween input parameters and shale gas production. The key con-
tributions of this research can be summarized in three main
aspects. Firstly, the coupling of CNN with the Sobol' method offers
an efficient means of sensitivity analysis, leveraging CNN's ability to
learn complex data relationships. This integration provides a for-
ward prediction model, enabling a thorough exploration of
parameter sensitivities. Secondly, the introduction of three distinct
sensitivity analysis scenarios adds depth to the framework, allow-
ing for a nuanced understanding of parameter influences at various
stages of shale gas production. These scenarios encompass the
analysis of the production stage as a whole, analysis by fixed time
intervals, and analysis by declining rate. Thirdly, the temporal
sensitivity analysis reveals dynamic changes in parameter influence
throughout different production stages, shedding light on the
varying significance of parameters at different points in time. The
findings of the sensitivity analysis highlight the critical role of
certain parameters in shale gas production. Across all scenarios, the
reservoir thickness andwell length consistently emerge as themost
influential factors, determining resource reserves and impacting
the hydraulic fracture stimulated area. In the analysis of the pro-
duction stage as a whole, parameters such as initial water satura-
tion, SRV zone porosity, and the number of fracture segments
exhibit moderate impacts, influencing resource reserves and fluid
flow capacity. Furthermore, the temporal sensitivity analysis un-
derscores the dynamic nature of parameter influences, with
reservoir thickness, initial formation pressure, and initial water
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saturation taking precedence in the declining stage, while param-
eters like fracture half-length, bottom-hole flow pressure, Lang-
muir volume, matrix permeability, and porosity become
significantly more influential in the stable production stage.
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