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a b s t r a c t

Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration
(RTM) and full waveform inversion (FWI) in attenuating transversely isotropic media. To describe the
attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave
equations are established for wavefield simulations, because they can provide clear and stable wave-
fields. However, due to the use of several approximations in deriving the wave equation and the
introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields
simulated by the previous pure-viscoacoustic tilted transversely isotropic (TTI) wave equations has low
accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisot-
ropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued
dispersion formula in viscoelastic vertical transversely isotropic (VTI) media. Then, we present the
hybrid finite-difference and low-rank decomposition (HFDLRD) method to accurately solve our proposed
pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our
pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave
equations in describing qP-wave kinematic and attenuation characteristics. Additionally, the numerical
experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid
finite-difference and pseudo-spectral (HFDPS) method in terms of accuracy of wavefield modeling.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Field seismic data observations and laboratory rock sample
measurements demonstrate that anisotropy and viscosity are
widely distributed in the subsurface medium (Carcione, 1992;
Thomsen, 1986; Best et al., 2007; Zhubayev et al., 2016). Velocity
anisotropy is commonly associated in the subsurface mediumwith
aligned structure (Thomsen, 1986; Alkhalifah, 2000). In addition,
attenuation anisotropy will coexist with velocity anisotropy when
seismic waves propagate through thin layers with various velocity
and attenuation characteristics or aligned fluid-filled cracks (Liu
et al., 2007; Carcione, 2010; Usher et al., 2017; Guo and
McMechan, 2017). The amplitude dimming and waveform distor-
tion of seismic waves are generated due to the viscosity and
anisotropy properties of the real earth medium. If the
.
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unsatisfactory effects of viscosity and anisotropy on seismic wave
propagation are ignored during migration imaging, the location of
the imaged interfaces will be deviated and the imaging resolution
will be reduced (Dutta and Schuster, 2014; Qu et al., 2017). There-
fore, it is important to precisely describe the effects of viscosity and
anisotropy on seismic wave propagation in order to counteract
these negative effects on high-precision imaging.

Viscosity, an anelastic property of the subsurface medium,
which has been observed in many field surveys and laboratory
measurements, particularly in the strong attenuation regions (e.g.,
hydrocarbon reservoir), will result in inherent attenuation effects
(McDonal et al., 1958; Guo et al., 2016). The intrinsic attenuation
characteristics can be expressed by the quality factor Q that
quantifies the energy loss due to subsurface medium absorption at
each wavelength (Aki and Richards, 1980; Zhu et al., 2013; Da Silva
et al., 2019). In past decades, in order to simulate seismic wave
propagation in viscoacoustic media, many viscoacoustic wave
equations have been proposed based on the standard linear solid
(SLS) model (Emmerich and Korn, 1987; Carcione et al., 1988;
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Robertsson et al., 1994; Deng and McMechan, 2007; Zhu et al.,
2013) and the constant Q model (Carcione et al., 2002; Carcione,
2010; Zhu and Harris, 2014; Wang et al., 2018, 2020). Viscoacous-
tic wave equations derived from constant Q theory (Kjartansson,
1979) have naturally separated amplitude dissipation terms and
phase dispersion terms, which have attracted a lot of attention.
Based on constant Q theory, a fractional Laplacian viscoacoustic
wave equation proposed by Zhu and Harris (2014) is widely used
for wavefield simulations and Q-compensated RTM in viscoacoustic
media (Zhu et al., 2014; Sun et al., 2015; Li et al., 2016). Following
that, several high-precision viscoacoustic wave equations have
been developed recently (Mu et al., 2021; Yang and Zhu, 2018; Liu
and Luo, 2021), which are based on constant Q theory.

Another widely existing characteristic of subsurface media is
anisotropy. To describe anisotropy, four independent parameters
are used by geophysicists to determine the phase and group ve-
locities of seismic waves in the transversely isotropic (TI) medium
(Tsvankin,1996; Fomel, 2004; Li and Stovas, 2021). The propagation
of seismic wave in anisotropic media can be precisely described by
the multi-parameter dependent anisotropic elastic wave equations
(Xu et al., 2020). However, these wave equations require a lot of
computational resources in the application. Therefore, most studies
have focused on deriving the wave equation in anisotropic media
considering only P-waves (Zhang et al., 2011; Yan and Liu, 2016).
Over the years, many acoustic anisotropic wave equations have
been developed, which mainly fall under two categories: the
coupled pseudo-acoustic anisotropic wave equations (Alkhalifah,
2000; Zhou et al., 2006; Du et al., 2007; Fletcher et al., 2009;
Duveneck and Bakker, 2011; Zhang et al., 2011) and the pure-
acoustic anisotropic wave equations (Chu et al., 2011; Zhan et al.,
2012; Mu et al., 2020). Coupled pseudo-acoustic anisotropic wave
equations can be efficiently applied to migration application and
canwell preserve the accurate kinematic characteristics of P-waves
(Huang et al., 2023). Nevertheless, the coupled pseudo-acoustic
anisotropic wave equation produces shear wave artifacts and is
restricted by the anisotropy parameters range. Therefore, pure-
acoustic anisotropic wave equations are developed to address the
afore-mentioned issues. However, the pure-acoustic anisotropic
wave equations have the disadvantage of requiring a large amount
of computation time, and their kinematic accuracy is lower than
that of the coupled pseudo-acoustic anisotropic wave equations,
due to the approximations used in the derivation of the wave
equations. As a result, one can choose from the different types of
acoustic anisotropic wave equations based on their requirements.

Generally, attenuation and anisotropy characteristics of the
subsurface media affect the seismic wavefield simultaneously
during seismic wave propagation (Hao and Alkhalifah, 2019; Da
Silva et al., 2019). To correct for the unsatisfactory effects of
attenuation and anisotropy, some recent studies have focused on
taking both attenuation and anisotropy into account in the deri-
vation of the wave equation (Zhu et al., 2007; Carcione et al., 2012;
Zhu and Bai, 2019). Based on an exact phase velocity formula and an
SLS attenuation model, Xu et al. (2015) developed a pure-
viscoacoustic TTI wave equation. Following that, several different
types of the viscoacoustic anisotropic wave equations have been
proposed recently, which can be used for wavefield simulations and
Q-compensated RTM (Zhang et al., 2020a; Fathalian et al., 2021; Mu
et al., 2022a). These viscoacoustic anisotropic wave equations,
however, only take attenuation isotropy into account and do not
account for attenuation anisotropy. Attenuation anisotropy has
been shown to have a considerable influence on seismic wave
propagation in some experimental and numerical studies
(Carcione, 1992; Lynn et al., 1999; Chichinina et al., 2009; Behura
and Tsvankin, 2009; Bai and Tsvankin, 2016; Zhubayev et al.,
2016; Zhu, 2017; Hao and Alkhalifah, 2017). To better describe the
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characteristics of seismic wave propagation in an attenuating
anisotropic medium, Da Silva et al. (2019) derived a viscoacoustic
TTI wave equation in the media with velocity anisotropy and
attenuation anisotropy. In addition, by combining the acoustic
anisotropic wave equation proposed by Duveneck et al. (2008) with
constant Q attenuation theory, Qiao et al. (2020) derived a coupled
pseudo-viscoacoustic TTI wave equation. Afterwards, Wang et al.
(2022) derived a fractional Laplacian viscoelastic wave equation
in attenuating anisotropic media, which can also be transformed
into the coupled pseudo-viscoacoustic anisotropic wave equation
under acoustic approximation. Unfortunately, these coupled
pseudo-viscoacoustic anisotropic wave equations suffer from SV-
wave artifacts. To address this issue, Mu et al. (2022b) and Qiao
et al. (2022) independently developed the decoupled pure-
viscoacoustic TTI wave equation in media with velocity and
attenuation anisotropy. Nevertheless, in media with strong atten-
uation and anisotropy, the wavefields simulated by these pure-
viscoacoustic TTI wave equations are inaccurate. As a result, it is
necessary to develop a pure-viscoacoustic TTI wave equation with
high accuracy for wavefield simulation in attenuating TTI media.

In addition, although the fractional Laplacian viscoacoustic
anisotropic wave equations can be well used for wavefield simu-
lations and Q-compensated RTM, the numerical simulation of the
variable-order fractional Laplacian is an intractable problem. The
average Qmethod proposed by Zhu and Harris (2014) is first used to
address this issue. However, the fractional Laplacian solving by the
average Q method is inaccurate in strongly heterogeneous attenu-
ation media. To deal with this problem, several high-accuracy
strategies have been proposed. Sun et al. (2015) proposed the
one-step wave extrapolation method based on the low-rank
decomposition (LROSE) to accurately solve the fractional Lap-
lacian viscoacoustic wave equation. Later, the constant fractional
order approximation method (Chen et al., 2016), the Hermite
distributed approximating functional method (Yao et al., 2017), the
matrix-transform numerical solver method (Chen et al., 2019b),
and the high-order Taylor series expansion method (Zhang et al.,
2020b) also were developed to solve the variable-order fractional
Laplacian. Among the afore-mentioned methods, the low-rank
decomposition approach has the advantage of higher accuracy in
solving the fractional Laplacian (Chen et al., 2019a; Zhou et al.,
2022; Zhang et al., 2023), which is of great significance for wave-
field simulation in strongly attenuating media. However, the LROSE
method derived by Sun et al. (2015) requires huge computational
cost in complex viscoacoustic media. Therefore, in order to improve
the computational speed of solving the viscoacoustic anisotropic
wave equations, a combination of the low-rank decomposition
method with the efficient finite-difference method is a satisfactory
choice for solving viscoacoustic anisotropic wave equation with
fractional Laplacian.

In this paper, starting from the exact complex-valued phase
velocity formula in viscoelastic VTI media, we derive a new pure-
viscoacoustic TTI wave equation using the new acoustic approxi-
mation that is totally S-wave free. Our new pure-viscoacoustic TTI
wave equation can provide more accurate wavefield than the pre-
vious wave equations in media with velocity anisotropy and
attenuation anisotropy. The accuracy of the proposed wave equa-
tion is first confirmed through the theoretical analysis. Then, with
the help of the numerical tests, we further verify that the proposed
wave equation has higher accuracy in describing qP-wave kine-
matic properties and attenuation characteristics than the pure-
viscoacoustic TTI wave equation proposed by Mu et al. (2022b). In
numerical simulations, we develop the hybrid finite-difference and
low-rank decomposition (HFDLRD) method to accurately solve our
new pure-viscoacoustic TTI wave equation. The numerical test in a
simple two-layer shows that the proposed HFDLRD method
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outperforms the hybrid finite-difference and pseudo-spectral
(HFDPS) method in terms of accuracy.

This paper is organized as follows: First, we derive a new pure-
viscoacoustic TTI wave equation through some mathematical ma-
nipulations. Theoretical analysis is used to verify the accuracy of
our proposed wave equation. Then, we develop the HFDLRD
method to calculate the newly derived wave equation. Finally, we
perform numerical simulation in homogeneous and heterogeneous
models to illustrate the accuracy and stability of the newly pro-
posed wave equation, along with the accuracy of the HFDLRD
method.
E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðM33 �M55Þcos2 qþ ðM55 �M11Þsin2 q

�2þ4ðM13 þM55Þ2sin2 qcos2 q

r
; (5)
2. Methodology

2.1. Derivation of the new pure-viscoacoustic anisotropic equation

To simulate the linear attenuation in seismology and seismic
exploration, the constant Q model proposed by Kjartansson (1979)
is one of the widely used mathematical models. Based on constant
Q theory, the frequency domain stress-strain relation in viscoelastic
VTI media can be expressed as

sijðuÞ¼MijðuÞεijðuÞ; (1)

where sij and εij denote the stress and strain tensors, respectively.
The complex stiffness coefficient MijðuÞ in Eq. (1) can be written as

MijðuÞ¼Cij cos
2
�
pgij=2

�� iu
u0

�2gij

; (2)
Ez

�
M33 cos2 qþM11 sin2 q�M55

�2þ4
h
ð1þ 2dÞM2

33 þ ðM11 � ð1þ 2dÞM33ÞM55 �M11M33

i
sin2 qcos2 q

r
: (7)
where u denotes the angular frequency, u0 denotes the reference
angular frequency, gij ¼ arctanð1 =QijÞ=p are dimensionless pa-
rameters related to the quality factor and the value of gij in Eq. (2) is
(0, 0.5) for any positive quality factor Qij.The elastic stiffness coef-
ficient Cij can be computed from Thomsen anisotropy parameters ε
and d (Thomsen, 1986). The Q-related Thomsen anisotropy pa-
rameters εQ and dQ can be used to characterize the anisotropic
quality factors Qij (Zhu and Tsvankin, 2006). Additionally, the
M55 ¼
h
ð1þ 2dÞM2

33 �M11M33

i
sin2 qcos2 qh�

M11 sin2 qþM33 cos2 q
�
� ðM11 � ð1þ 2dÞM33Þsin2 qcos2 q
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frequency-dependent complex-valued velocity can be used to
describe the seismic wave propagation in attenuating media. By
solving the viscoelastic Christoffel equation in VTI media, the exact
complex-valued phase velocity formula in 2D viscoelastic media
can be written as

V2
p ðqÞ¼

�
M11 sin2 qþM33 cos2 qþM55 þ E

�
=2r; (3)

V2
svðqÞ¼

�
M11 sin2 qþM33 cos2 qþM55 � E

�
=2r; (4)
where VpðqÞ and VsvðqÞ denote the P- and SV-wave phase velocity,
respectively. q and r are the phase angle and the density,
respectively.

Based on Eq. (3), using the acoustic approximation and other
approximations, some pure-viscoacoustic TTI wave equations have
been developed recently (Qiao et al., 2022; Mu et al., 2022b).
Nevertheless, due to the use of these approximations in deriving
the wave equation, the previous pure-viscoacoustic TTI wave
equations have low simulation accuracy. Therefore, on the basis of
the new acoustic approximation (Xu et al., 2020), we derive a high-
precision pure-viscoacoustic TTI wave equation in this study. First,
the complex stiffness coefficientM13 in Eq. (5) can be approximated
using the expression given as follows (Qiao et al., 2019):

M13zM33ð1þ dÞ�2M55: (6)

Substituting Eq. (6) into Eq. (5), after several mathematical
manipulations, Eq. (5) can be expressed as
Drawing on the work of Xu et al. (2020), we make SV-wave

phase velocity VsvðqÞ to zero along all the direction, which yields

M11 sin2 qþM33 cos2 qþM55 ¼ E: (8)

Based on Eqs. (7) and (8), the expression of M55 can be given as
i : (9)
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By substituting Eqs. (8) and (9) into Eq. (3), and we assume that
the density is constant and equals to 1, Eq. (3) can be written as

V2
p ðqÞ¼M11 sin

2 qþM33 cos
2 q

þ
h
ð1þ2dÞM2

33�M11M33

i
sin2 qcos2 qh�

M11 sin
2 qþM33 cos2 q

�
�ðM11�ð1þ2dÞM33Þsin2 qcos2 q

i :
(10)

Eq. (10) is a pure P-wave phase velocity formula. In addition,
we can observe that Eq. (10) only contains one anisotropy atten-
uation parameter due to the approximation (Eq. (6)) we adopted.
To address this issue, we make an assumption that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2d

p
M33z

M13, because for d2ð� 0:2;0:4Þ, dQ2ð�1:2;0:6Þ and Qp�10, there

is
���ðM13�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2d

p
M33Þ=M13

����0:0995, noting that M13¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2d

p
C33 cos2ðpg13=2Þðiu=u0Þ2g13 and the expression g13 is

defined as g13 ¼ arctanð1=Q13Þ=p, where
Q13¼2Q33=ðdQC2

33 =C
2
13þ2Þ (i.e., M13 is defined under acoustic

approximation). Thereafter, Eq. (10) can be expressed as

V2
p ðqÞ¼M11 sin2 qþM33 cos2 q

þ
h
M2

13

.
M33 �M11

i
sin2 qcos2 qh�

ð1þ 2εÞsin2 qþ cos2 q
�
�2ðε� dÞsin2 qcos2 q

i : (11)

The accuracy analysis of Eq. (11) are presented in section 2.2.
Additionally, we can rewrite Eq. (11) as
u2 ¼
�
h11k

2g11 þ t11ðiuÞk2g11�1
�
k2x þ

�
h33k

2g33 þ t33ðiuÞk2g33�1
�
k2zþh�

a3k2l13 þ b3ðiuÞk2l13�1
�
�
�
h11k

2g11 þ t11ðiuÞk2g11�1
�i

k2xk
2
z

�
k2x þ k2z

�
h
ð1þ 2εÞk4x þ k4zþ2ð1þ dÞk2xk2z

i ;

(19)
V2
p ðqÞ¼M11 sin

2 qþM33 cos
2 qþh

M2
13

.
M33�M11

i
sin2 qcos2 q

�
sin2 qþcos2 q

�
h�

ð1þ2εÞsin2 qþcos2 q
��

sin2 qþcos2 q
�
�2ðε�dÞsin2 qcos2 q

i :
(12)

In VTImedia, the relation between phase velocity, frequency and
wavenumber is given as shown below (Zhan et al., 2012):

sin q¼VpðqÞkx
u

; cos q ¼ VpðqÞkz
u

; (13)

where kx, kz denote x, z direction wavenumber, respectively.
Substituting Eq. (13) into Eq. (12), Eq. (12) can be written as
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u2 ¼M11k
2
x þM33k

2
z þ

�
M2

13

.
M33 �M11

�
k2xk

2
z

�
k2x þ k2z

�
h
ð1þ 2εÞk4x þ k4zþ2ð1þ dÞk2xk2z

i :

(14)

The term ðiuÞ2gij in Eq. (14) can be converted into fractional
Laplacians to reduce the computational memory (Zhu and Harris,
2014), which can be expressed as

ðiuÞ2gij z v2gij k2gij cos
�
pgij

�
þ iuv2gij�1k2gij�1 sin

�
pgij

�
; (15)

where k is the spatial wavenumber, v denotes the phase velocity at
the reference frequency. Note that the phase velocity v is replaced

by v11 ¼ vp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2εÞp

, v33 ¼ vp, and v13 ¼ vpð1þ 2dÞ1=4 in the
process of solving M11, M33, and M13 (Qiao et al., 2020), respec-
tively. vp denotes the P-wave velocity along the vertical symmetry
axis at the reference frequency. Using Eq. (15),Mij can be written as

Mij z hijk
2gij þ iutijk

2gij�1; (16)

where

hij ¼ C
gijþ1
ij cos2

�
pgij

.
2
�
u
�2gij

0 cos
�
pgij

�
; (17)

tij ¼ C
gijþ0:5
ij cos2

�
pgij

.
2
�
u
�2gij

0 sin
�
pgij

�
: (18)

Inserting Eq. (16) into Eq. (14), we derive the pure-viscoacoustic
dispersion relation in VTI media:
where l13 ¼ 2g13 � g33, a3 ¼ ðC2
13=C33Þ

l13þ1
cos2ðpl13=2Þu�2l13

0

cosðpl13Þ, b3 ¼ ðC2
13=C33Þ

l13þ0:5
cos2ðpl13=2Þu�2l13

0 sinðpl13Þ , h11 ¼
Cg11þ1
11 cos2ðpg11=2Þu�2g11

0 cosðpg11Þ, t11 ¼ Cg11þ0:5
11 cos2ðpg11=2Þ

u
�2g11
0 sinðpg11Þ, h33 ¼ Cg33þ1

33 cos2ðpg33=2Þu�2g33
0 cosðpg33Þ,

t33 ¼ Cg33þ0:5
33 cos2ðpg33=2Þu�2g33

0 sinðpg33Þ.
By transforming Eq. (19) into the time-space domain, we can

obtain the time-space domain pure-viscoacoustic VTI wave equa-
tion as follows:



v2p
vt2

¼
�
h11

�
�V2

�g11 þ t11
v

vt

�
�V2

�g11�0:5
�

v2p
vx2

þ
�
h33

�
�V2

�g33 þ h33
v

vt

�
�V2

�g33�0:5
�

v2p
vz2

þ
��

a3
	�V2
l13 þ b3

v

vt

�
�V2

�l13�0:5
�
�
�
h11

�
�V2

�g11 þ t11
v

vt

�
�V2

�g11�0:5
��

v4

vx2vz2

 
v2

vx2
þ v2

vz2

!
"
ð1þ 2εÞ v4

vx4
þ v4

vz4
þ2ð1þ dÞ v4

vx2vz2

# pþ f ;

(20)
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where f is source function. We notice that Eq. (20) is equivalent to
the time-space domain anisotropic pure P-wave equation given by
Liang et al. (2023) when Qp/∞.

In TTI media, the pure-viscoacoustic TTI wave equation can be
deduced from Eq. (20) through coordinate rotation. The wave-
number relationship between VTI and TTI media (Zhan et al., 2012)
can be expressed as

bkx ¼ cos 4kx � sin 4kz;bkz ¼ sin 4kx þ cos 4kz;
(21)
v2p
vt2

¼
�
h11

�
�V2

�g11 þ t11
v

vt

�
�V2

�g11�0:5
� 

cos2 4
v2

vx2
þ sin2

4
v2

vz2
� sinð24Þ v2

vxvz

!
pþ

�
h33

�
�V2

�g33 þ t33
v

vt

�
�V2

�g33�0:5
� 

sin2
4

v2

vx2
þ cos2 4

v2

vz2
þ sinð24Þ v2

vxvz

!
pþ

��
a3
�
�V2

�l13 þ b3
v

vt

�
�V2

�l13�0:5
�
�
�
h11

�
�V2

�g11 þ t11
v

vt

�
�V2

�g11�0:5
��

St

 
v2

vx2
þ v2

vz2

!
pþ f ;

(24)

where

St ¼

0BBBB@
cos2 4sin2

4

 
v4

vx4
þ v4

vz4

!
þ
�
cos4 4þ sin4

4� sin2ð24Þ
� v4

vx2vz2

þcosð24Þsinð24Þ v4

vx3vz
� cosð24Þsinð24Þ v4

vxvz3

1CCCCA
0BBBBBBBBB@

�
2ε cos4 4þ2d cos2 4sin2

4
� v4

vx4
þ
�
2ε sin4

4þ2d cos2 4sin2
4
� v4

vz4

þ3ðε� dÞsin2ð24Þ v4

vx2vz2
þ
�
2d cosð24Þ�4ε cos2 4

�
sinð24Þ v4

vx3vz

�
�
4ε sin2

4þ2d cosð24Þ
�
sinð24Þ v4

vxvz3

1CCCCCCCCCA

: (25)
where 4 denotes the dip angle of the symmetry axis. Replacing kx

and kz in Eq. (19) with bkx and bkz, Eq. (20) can be written as
u2 ¼
�
h11k

2g11 þ t11ðiuÞk2g11�1
��

cos2 4k2x þ sin2
4k2z � sinð24Þkxkz�

h33k
2g33 þ t33ðiuÞk2g33�1

��
sin2

4k2x þ cos2 4k2z þ sinð24Þkxkz
�
þh�

a3k
2l13 þ b3ðiuÞk2l13�1

�
�
�
h11k

2g11 þ t11ðiuÞk2g11�1
�i

Sk
�
k2x þ k2z
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where

Sk ¼
ðcos 4kx � sin 4kzÞ2ðsin 4kx þ cos 4kzÞ2"

ð1þ 2εÞðcos 4kx � sin 4kzÞ4 þ ðsin 4kx þ cos 4kzÞ4þ
2ð1þ dÞðcos 4kx � sin 4kzÞ2ðsin 4kx þ cos 4kzÞ2

# :
(23)

Multiplying both sides of Eq. (22) with the wavefield pðu;kx;kzÞ,
and applying the inverse Fourier transforms relations u2/v2=vt2,
k2x/v2=vx2, k2z/v2=vz2. Then, the time-space domain pure-
viscoacoustic TTI wave equation can be expressed as
�
þ

�
;

(22)



Fig. 1. The comparisons of the P-wave phase velocity curves for different media parameters. The black solid lines, the cyan dashed lines, and the red dashed lines denote the exact
phase velocity formula of P-wave in viscoelastic VTI media, our approximate formula and the approximate formula given by Mu et al. (2022b), respectively. The media parameters
from (a) to (d) are Model A to Model D in Table 1, respectively.
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It is notable that Eq. (24) contains decoupled phase dispersion
terms and amplitude attenuation terms. In the above equations, the
phase dispersion effects are dominated by a term containing
ð�V2Þgij , the amplitude attenuation effects are dominated by a term

containing vð�V2Þgij�0:5=vt. If we only consider phase dispersion
effects, the dispersion-dominated wave equation can be given as

v2p
vt2

¼ h11

�
�V2

�g11

 
cos2 4

v2

vx2
þ sin2

4
v2

vz2
� sinð24Þ v2

vxvz

!
pþ

h33

�
�V2

�g33

 
sin2

4
v2

vx2
þ cos2 4

v2

vz2
þ sinð24Þ v2

vxvz

!
pþ

�
h3

�
�V2

�l13 � h11

�
�V2

�g11
�
St

 
v2

vx2
þ v2

vz2

!
pþ f :

(26)

Similarly, the dissipation-dominated wave equation can be
written as
v2p
vt2

¼
�
C11 þ t11

v

vt

�
�V2

�g11�0:5
� 

cos2 4
v2

vx2
þ sin2

4
v2

vz2
� sinð24Þ

�
C33 þ t33

v

vt

�
�V2

�g33�0:5
� 

sin2
4

v2

vx2
þ cos2 4

v2

vz2
þ sinð24Þ v2

vxvz

!
��

C2
13

�
C33 þ t3

v

vt

�
�V2

�l13�0:5
�
�
�
C11 þ t11

v

vt

�
�V2

�g11�0:5
��

St
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2.2. Theoretical accuracy analysis of the proposed pure-
viscoacoustic TTI wave equation

In this section, several theoretical analysis experiments are
performed to investigate the accuracy of the newly proposed wave
equation. The comparisons between the exact complex-valued
phase velocity formula for P-wave in viscoelastic TTI media (Eq.
(A-1)), the formula proposed by Mu et al. (2022b), and our for-
mula are generated for accuracy analysis. First, we plot the phase
velocity curves for different parameters shown in Fig. 1, the model
parameters are given in Table 1. Note that the phase velocity can be
generated using Eq. (A-3). The source dominant frequency is the
same as the reference frequency, which is 30 Hz.

Fig. 1 shows that the phase velocity curves of the proposed
formula (Eq. (24)) are in better match with the phase velocity
curves of exact formula than that of the formula given by Mu et al.
(2022b). With velocity anisotropy strengthening, the newly derived
formula is more accurate than the formula of Mu et al. (2022b), as
shown in Fig. 1(b). These results suggest that the newly derived
formula has higher accuracy than the formula derived by Mu et al.
(2022b).

Furthermore, we generate the maximum relative error to
v2

vxvz

!
pþ

pþ

v2

vx2
þ v2

vz2

!
pþ f :

(27)



Table 1
The model parameters for VTI models to generate the phase velocity curve for ac-
curacy analysis (The parameters vs and Qs are the SV-wave velocity and quality
factor, which is used for generating the exact complex-valued phase velocity for P-
wave in viscoelastic anisotropic media.).

Model Model parameters

vp;m=s vs;m=s ε d εQ dQ Qp Q s

Model A 3000 1800 0.2 0.1 �0.4 �0.3 30 20
Model B 3000 1800 0.35 0.1 �0.7 �0.3 30 20
Model C 3000 1800 0.1 0.2 �0.2 �0.6 30 20
Model D 3000 1800 0.11 �0.055 �0.3 �0.15 30 20
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investigate the accuracy of the newly derived wave equation. The
maximum relative error function given by Mu et al. (2020) can be
reformulated as
Fig. 2. The maximum relative error of the phase velocity and quality factor of the differe
velocity; (c) and (d) are the maximum relative error of the quality factor. The attenuation an
parameters of (c) and (d) are ε¼ 0:15, d¼ 0:1. The P-wave model parameters are vp ¼ 3
anisotropic media.
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ERðx; yÞ¼max
�jVeðx; y; qÞ � Vaðx; y; qÞj

Vaðx; y; qÞ
�
; q2

�
0;

p
2

�
; (28)

where Veðx; y; qÞ denotes the exact formula of P-wave in viscoelastic
anisotropic media; Vaðx; y; qÞ represents the approximate P-wave
formula in viscoacoustic anisotropic media; x and y denote the
variable we are studying. Fig. 2(a)�(b) shows the maximum rela-
tive error of the phase velocity of different approximate formulas.
Fig. 2(c)e(d) shows the maximum relative error of the quality of
different approximate formulas. The phase velocity and quality
factor can be generated using Eq. (A-3) and Eq. (A-4), respectively.
In Fig. 2(a)e(b), the proposed formula has more area with relative
phase velocity error less than 1%, in comparison to the formula
proposed by Mu et al. (2022b). This result suggests that the newly
derived equation has higher accuracy in representing velocity
nt approximation formulas. (a) and (b) are the maximum relative error of the phase
isotropy parameters of (a) and (b) are εQ ¼ � 0:4, dQ ¼ � 0:3. The velocity anisotropy
000 m=s, Qp ¼ 30, and the parameters vs¼ 1800 m=s and Qs¼ 20 are for viscoelastic
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anisotropy than the formula given by Mu et al. (2022b). Moreover,
from Fig. 2(c)e(d), one can clearly see that the maximum relative
error of quality factor of the proposed formula is obvious smaller
than the formula proposed by Mu et al. (2022b), which demon-
strates the proposed formula with higher precision in representing
attenuation anisotropy. From the above results, one can conclude
that the newly derived equation has higher accuracy than the for-
mula developed by Mu et al. (2022b) in describing velocity
anisotropy and attenuation anisotropy.
3. Numerical implementations

In this section, we develop the HFDLRD method to accurately
solve our new wave equation. The variable-order fractional Lap-
lacians and mixed-domain operator Sk are solved by the low-rank
decomposition method (Sun et al., 2016), and the other partial
derivatives are solved by the finite-difference method. The low-
rank decomposition method was developed by Fomel et al.
(2013), which can be expressed as

Wðx;kÞz
XM
m¼1

W1ðx;kmÞ
XN
n¼1

amnW2ðxn;kÞ; (29)

where W1ðx;kmÞ and W2ðxn;kÞ are the submatrices of Wðx; kÞ,
which are related to the wavenumbers and spatial locations,
respectively. The coefficient amn is the connection between
W1ðx;kmÞ andW2ðxn;kÞ, andm and n is the rank of the matrixes. In
addition, the coefficient amn can be determined using expression
that amn ¼ Wyðxn; kmÞ, where y denotes the pseudoinverse (seen
more detail in Fomel et al., 2013). Based on the HFDLRD strategy, Eq.
(24) can be rewritten as

v2p
vt2

¼ ða11q1 þ b11q2Þ
 
cos2 4

v2

vx2
þ sin2

4
v2

vz2
� sin 2 4

v2

vxvz

!
þ

ða33q3 þ b33q4Þ
 
sin2

4
v2

vx2
þ cos2 4

v2

vz2
þ sin 2 4

v2

vxvz

!
þ

ða3q5 þ b3q6 � ða11q7 þ b11q8ÞÞ
 

v2

vx2
þ v2

vz2

!
þ f ;

(30)

where q1 ¼ F �1ðk2g11F ðpÞÞ, q2 ¼ F �1ðk2g11�1F ðvp=vtÞÞ, q3 ¼
F �1ðk2g33F ðpÞÞ, q4 ¼ F �1ðk2g33�1F ðvp=vtÞÞ, q5 ¼
F �1ðk2gl13 SkF ðpÞÞ, q6 ¼ F �1ðk2gl13

�1SkF ðvp=vtÞÞ, q7 ¼
F �1ðk2g11SkF ðpÞÞ, q8 ¼ F �1ðk2g11�1SkF ðvp=vtÞÞ. F and F �1

denote the forward fast Fourier transforms (FFTs) and inverse FFTs,
respectively. Based on Eq. (28), q1 can be solved by the low-rank
decomposition as follows:
F �1
��

�V2
�g11

F ðpÞ
�
z
XM
m¼1

W1ðx;kmÞ
 XN

n¼1

amnF
�1ðW2ðxn;kÞF ðpÞÞ

!
: (31)
Correspondingly, q2 � q8 also can be solved by the low-rank
decomposition method. To solve Eq. (31), we can use a small rank
of low-rank decomposition to meet the accuracy requirement well,
because Eq. (31) is independent by the velocity model (Yan and Liu,
873
2016; Zhang et al., 2019). Here, if the ranks of the low-rank
decomposition in solving q1 � q4 and q5 � q8 are defined as N1
and N2 respectively, then, the number of forward FFTs and inverse
FFTs are 2 and 4N1þ4N2 respectively.
4. Numerical examples

In this section, we use several homogeneous and heterogeneous
models to illustrate the accuracy and stability of our proposed pure-
viscoacoustic TTI wave equation (Eq. (24)). The coupled pseudo-
viscoacoustic TTI wave equation derived by Qiao et al. (2020) is
used as the reference to evaluate the accuracy of the newly derived
equation, due to the wavefield simulated by the coupled pseudo-
viscoacoustic TTI wave equation preserves accurately the kine-
matic features (Mu et al., 2022b). For numerical implementation, all
the numerical examples used in this section are solved by the
HFDLRD method. In addition, the density is uniformly defined as
r¼ 1 in all numerical examples. A simple two-layer model is
employed to investigate the accuracy of the proposed HFDLRD
method. The boundary reflections are attenuated by using the
sponge absorbing boundary (Cerjan et al., 1985).
4.1. A homogeneous model

4.1.1. Accuracy analysis of the proposed pure-viscoacoustic TTI
wave equation

In this case, we build a homogeneous model to perform wave-
field simulation to illustrate the accuracy of our new pure-
viscoacoustic TTI wave equation. The homogeneous model is built
of 401� 401 grids and discretizedwith grid spacing of 10m� 10m.
A Ricker wavelet with the dominant frequency of 25 Hz is injected
at the central of model; the time step is 0.001 s; the reference
frequency is 25 Hz. Fig. 3 shows the snapshots at 0.5 s for different
attenuating VTI models simulated by the coupled pseudo-
viscoacoustic TTI wave equation of Qiao et al. (2020), the pure-
viscoacoustic TTI wave equation derived by Mu et al. (2022b), and
our new wave equation, respectively. The ranks of the low-rank
decomposition method are N1 ¼ 1 and N2 ¼ 1.

From Fig. 3, one can observe that the wavefields generated by
the coupled pseudo-viscoacoustic TTI wave equation produce the
S-wave artifacts, while the wavefields generated by the pure-
viscoacoustic TTI wave equation are free of S-wave artifacts. This
result suggests that the wavefields simulated by pure-viscoacoustic
TTI wave equation are noise-free. Additionally, Figs. (4) and (5)
show the wavefield snapshots comparison in a wiggle format.
Fig. 4(a) is the superposition of Fig. 3(e) (red dashed line) and
Fig. 3(d) (black solid line). Fig. 4(b) is the superposition of Fig. 3(f)
(red dashed line) and Fig. 3(d) (black solid line). Similarly, Fig. 5(a)
is the superposition of Fig. 3(h) (red dashed line) and Fig. 3(g) (black
solid line). Fig. 5(b) is the superposition of Fig. 3(i) (red dashed line)
and Fig. 3(g) (black solid line). Given that the attenuation param-
eters in Fig. 3(d)e(e) are set as isotropy, Fig. 4 can be used to
investigate the accuracy of our new wave equation in representing
velocity anisotropy. Fig. 4 clearly shows that the wavefields
generated by the newly derived wave equation are in better



Fig. 3. Wavefield snapshots at 0.5 s for different attenuating VTI models. The same parameters for these VTI models are: vp ¼ 3000 m=s, ε¼ 0:35, d¼ 0:05, 4¼ 0, Qp ¼ 30. The
attenuation anisotropy parameters are: (a)�(c) εQ ¼ � 0:7, dQ ¼ � 0:15; (d)�(f) εQ ¼ 0, dQ ¼ 0. (g) is the difference between (a) and (d), (h) is the difference between (b) and (e), and
(i) is the difference between (c) and (f). The first column to the third column are the wavefields simulated by the coupled pseudo-viscoacoustic TTI wave equation derived by Qiao
et al. (2020), the pure-viscoacoustic TTI wave equation proposed by Mu et al. (2022b), and our new pure-viscoacoustic TTI wave equation, respectively.
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agreement with the reference traces (black line) than the wave-
fields simulated by the pure-viscoacoustic TTI wave equation
derived by Mu et al. (2022b), as pointed out by the black arrows.
This result illustrates that the newly derived wave equation has
higher accuracy in describing velocity anisotropy than the pure-
viscoacoustic TTI wave equation proposed by Mu et al. (2022b).
Similar with Fig. 4, the results in Fig. 5 show that the wavefields
calculated by the proposed wave equation are closer to the refer-
ence wavefields than that of the pure-viscoacoustic TTI wave
equation given byMu et al. (2022b). This finding demonstrates that
the wavefields simulated by our new wave equation are more ac-
curate than the pure-viscoacoustic TTI wave equation derived by
Mu et al. (2022b) in representing the attenuation anisotropy
characteristics. Therefore, according to the above results, we can
conclude that the newly derivedwave equation has higher accuracy
than the pure-viscoacoustic TTI wave equation proposed by Mu
et al. (2022b) in describing velocity anisotropy and attenuation
anisotropy. These numerical results also are consistent with the
874
theoretical analysis displayed in Figs. 1 and 2.
4.1.2. Modeling of the decoupled amplitude attenuation and phase
dispersion effects

To demonstrate the effects of decoupled amplitude attenuation
and phase dispersion of our pure-viscoacoustic TTI wave equation,
we build a homogenous model with grid points of 401 � 401 and a
spacing of 10 m. The model parameters are vp¼ 3000 m/s, ε¼ 0:35,
d¼ 0:05, εQ ¼ � 0:7, dQ ¼ � 0:15, 4¼ 45. The Ricker wavelet source
with a dominant frequency of 25 Hz is located at the center of the
model, besides, the time step is 0.001 s and the reference frequency
is 1000 Hz. The ranks of the low-rank decomposition method are
N1 ¼ 1 and N2 ¼ 1. Fig. 6(a) displays wavefield snapshots at 0.5 s
simulated by the different equations. In Fig. 6(a), comparing with
the simulation results of the acoustic TTI equation, which can be
found that the dissipation TTI equation decreases the amplitude
energy, the dispersion equation mainly makes impact on phase
delay, and the viscoacoustic TTI equation has influence both on



Fig. 4. Comparisons of wavefield snapshots from Fig. 3(d)e(f) in wiggle forms. (a) The wavefields generated by the pure-viscoacoustic TTI wave equation derived by Mu et al.
(2022b) (Fig. 3(e)) (red dashed lines) and the reference wavefield (Fig. 3(d)) (black solid lines). (b) The wavefields generated by the proposed pure-viscoacoustic TTI wave equa-
tion (Fig. 3(f)) (red dashed lines) and the reference wavefield (Fig. 3(d)) (black solid lines).

Fig. 5. Comparisons of wavefield snapshots from Fig. 3(g)e(i) in wiggle forms. (a) The wavefields generated by the pure-viscoacoustic TTI wave equation derived by Mu et al.
(2022b) (Fig. 3(h)) (red dashed lines) and the reference wavefield (Fig. 3(g)) (black solid lines). (b) The wavefields generated by the proposed pure-viscoacoustic TTI wave
equation (Fig. 3(i)) (red dashed lines) and the reference wavefield (Fig. 3(g)) (black solid lines).
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amplitude decrease and phase delay. Fig. 6(b) shows wavefield
snapshots at 0.5 s simulated by pure-viscoacoustic TTI wave
equation with different quality factors, which illustrates that the
lower the quality factor, amplitude attenuation and phase delay are
more serious. The above results suggest that our pure-viscoacoustic
anisotropic wave equation can achieve decoupled amplitude
attenuation and phase dispersion wavefield simulations, which
facilitate the realization of Q-compensated RTM in attenuating
anisotropic media.
4.2. A simple two-layer model

In this case, we use a simple two-layer model to investigate the
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accuracy of the HFDLRD method in solving the pure-viscoacoustic
TTI wave equation. Note that the pure-viscoacoustic TTI wave
equation proposed by Mu et al. (2022b) is used for generating
wavefield in this case. The model is discretized with 401 � 401 grid
points uniformly along the vertical and horizontal directions with a
spacing of 10 m. The source is a Ricker wavelet with a peak fre-
quency of 25 Hz, which is placed at the central of model. The time
step is 0.001 s and the reference frequency is 25 Hz. The reference
wavefield is calculated by the blocked computing method (Li et al.,
2016). We use the HFDPSmethod based on the second-order Taylor
series expansion approximation of Zhang et al. (2020b) to generate
wavefields for comparison. The ranks of the low-rank decomposi-
tion method are N1 ¼ 2 and N2 ¼ 2. Wavefield snapshots at 0.9 s for



Fig. 6. Experiments of the newly proposed pure-viscoacoustic TTI wave equation simulating in the homogeneous media. (a) Wavefield snapshots at 0.5 s simulated by acoustic TTI,
dissipation TTI, dispersion TTI, and viscoacoustic TTI wave equations. (b) Wavefield snapshots at 0.5 s simulated by pure-viscoacoustic TTI wave equation with different quality
factor. The Qp¼ 30 (in Fig. 6(a)), the reference frequency is 1000 Hz.

Fig. 7. Wavefield snapshots at 0.9 s computed using the block method (a), the HFDPS method (b), and the HFDLRD method (c), respectively. (d) and (e) show the differences
between (b) and (a) and between (c) and (a), respectively. The first layer depth is 2.4 km and model parameters are vp ¼ 1500 m=s, ε¼ 0:15, d¼ 0:1, εQ ¼ � 0:15, dQ ¼ � 0:3, 4¼ 0,
Qp ¼ 5. The parameters of second layer are vp ¼ 2500 m=s, ε¼ 0:25, d¼ 0:2, εQ ¼ � 0:25, dQ ¼ � 0:6, 4¼ 0, Qp ¼ 15.
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the simple two-layer model calculated by the blocking method, the
HFDPSmethod, and the HFDLRDmethod are shown in Fig. 7(a)�(c),
respectively. The corresponding wavefield differences are shown in
Fig. 7(d)e(e). From Fig. 7, one can see that the differences (Fig. 7(e))
between Fig. 7(a) and Fig. 7(c) are almost zero, while the differences
(Fig. 7(d)) between Fig. 7(a) and Fig. 7(b) are apparent. The above
findings suggest that HFDLRD method outperforms HFDPS method
in terms of accuracy of wavefield simulation in attenuating aniso-
tropic media, especially in the case of strong attenuation (Q < 10).
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4.3. A modified Hess partial model

The modified complex Hess partial model is further used to
verify the accuracy of the newly proposed equation simulated in
complex media, and the model parameters are shown in Fig. 8. The
model with size of 6 km� 3 km and discretizedwith grid spacing of
10 m � 10 m. A Ricker wavelet with a peak frequency of 20 Hz is
located at (3000 m,10 m). The time step is 0.001 s, the reference
frequency is 20 Hz. The wavefield snapshots at 1.15 s generated by



Fig. 8. Modified Hess partial model of velocity (a), Thomsen anisotropic parameters ε (b) and d (c), Qp (d), Q-related Thomsen anisotropic parameters εQ (e) and dQ (f).

Fig. 9. Wavefield snapshots at 1.15 s generated by the coupled pseudo-viscoacoustic TTI wave equation derived by Qiao et al. (2020) (a), our pure-viscoacoustic TTI wave equation
(b), the pure-viscoacoustic TTI wave equation derived by Mu et al. (2022b) (c), respectively.
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different equations are shown in Fig. 9. The ranks of the low-rank
decomposition method are N1 ¼ 2 and N2 ¼ 2. In Fig. 9(a), there
are shear wave artifacts in the wavefields (as shown in the black
dashed rectangular box), while the wavefields simulated by pure-
viscoacoustic TTI wave equation doesn't contain (as shown in
Fig. 9(b)e(c)), which illustrates that pure-viscoacoustic TTI wave
equation can obtain cleaner results than coupled pseudo-
viscoacoustic TTI wave equation. For better comparison, the
extracted traces from Fig. 9 are shown in Fig. 10. Fig. 10 shows that
the traces extracted from Fig. 9(b) (red dashed line) are closer to the
traces extracted from Fig. 9(a) (black solid line) than the traces
extracted from Fig. 9(c) (pink dashed line). From the above results,
one can conclude that the newly derived pure-viscoacoustic TTI
wave equation can achieve more accurate numerical modeling re-
sults than that of the wave equation derived byMu et al. (2022b) in
complex attenuating anisotropic media.
Fig. 10. Comparisons of the single-traces at the depth of z ¼ 0.75 km (a) and z ¼ 1.55 km (b)
extracted from Fig. 9(a), 9(b), and 9(c), respectively.
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4.4. A modified BP 2007 model

To demonstrate the stability of our pure-viscoacoustic TTI wave
equation in complex model, the modified BP 2007 model is
employed to perform the wavefield simulation. The model is dis-
cretized by 701 � 451 grid points with a uniform vertical and
horizontal space step of 15 m, the model parameter as displayed in
Fig. 11. A Ricker wavelet with the dominant frequency of 20 Hz is
located at (5257.5 m, 10 m); the time step is 0.001 s; the reference
frequency is 20 Hz. The ranks of the low-rank decomposition
method are N1 ¼ 2 and N2 ¼ 3. Fig. 12(a)�(b) shows the wavefields
simulated by the coupled pseudo-viscoacoustic TTI wave equation
of Qiao et al. (2020) at 1.5 and 2.5 s, respectively. Fig. 13(a)�(d)
shows thewavefields generated by our pure-viscoacoustic TTI wave
equation at 1.5, 2.5, 3.0 and 3.5 s, respectively. It can be distinctly
seen that Fig. 12(a) produces the numerical instability (as pointed
. The black solid lines, the red dashed lines, and the pink dashed lines denote the traces



Fig. 11. BP 2007 model of velocity (a), Thomsen anisotropic parameters ε (b) and d (c), Qp (d), Q-related Thomsen anisotropic parameters εQ (e) and dQ (f), tilted parameter 4 (g).

Fig. 12. Wavefield snapshots simulated by the coupled pseudo-viscoacoustic TTI wave equation proposed by Qiao et al. (2020) at t ¼ 1.5 s (a), t ¼ 2.5 s (b).
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out by the black arrows), and the strong numerical instability is
appeared in Fig. 12(b). On the contrast, the wavefields generated by
our pure-viscoacoustic TTI wave equation can remain stable, as
displayed in Fig. 13. The above results demonstrate that our pure-
viscoacoustic TTI wave equation can obtain a more stable wave-
field in complex media in comparison to the coupled pseudo-
viscoacoustic TTI wave equations.
5. Discussion

In this paper, a new pure-viscoacoustic anisotropic wave equa-
tion is derived from the exact complex-valued dispersion relation
in viscoelastic VTI media and we develop the HFDLRD method to
accurately solve the proposed wave equation. The newly derived
equation has higher accuracy than the previous wave equations,
while also has drawback that requires huge computational re-
sources. This is because the existence of the operator St in Eq. (24).
To improve the computational efficiency, we provide a simplified
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wave equation as follows:
We rewrite Eq. (11) as

V2
P ðqÞ¼M11 sin2 qþM33 cos2 q

þ
h
M2

13

.
M33 �M11

i
sin2 qcos2 q

ð1þ εÞ þ
�
ε

�
2 sin2 q�1

�
�0:5ðε� dÞsin2 2q

� ; (32)

given that 0:5ðε� dÞsin2 2q� 0:075 for ε2ð0;0:4Þ, q2ð0;2pÞ
and d2ð� 0:2;0:4Þ, we can make an assumption that 0:5ðε�
dÞsin2 2qz0. In addition, we make an assumption that sin2 qz0:5,

because the average of sin2 q is 0.5 for q2ð0;2pÞ (Huang et al.,
2023). Therefore, Eq. (32) can be approximated as follows:

V2
P ðqÞ ¼ M11 sin2 qþM33 cos2 q

þ
h
M2

13

.
M33 �M11

i
sin2 qcos2 q

1þ ε

: (33)



Fig. 13. Wavefield snapshots simulated by our pure-viscoacoustic TTI wave equation at t ¼ 1.5 s (a), t ¼ 2.5 s (b), t ¼ 3.0 s (c), t ¼ 3.5 s (d).
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Using Eqs. (13) and (15), Eq. (33) can be formulated as
u2 ¼
�
h11k

2g11 þ t11ðiuÞk2g11�1
�
k2x þ

�
h33k

2g33 þ t33ðiuÞk2g33�1
�
k2zþh�

a3k2l13 þ b3ðiuÞk2l13�1
�
�
�
h11k

2g11 þ t11ðiuÞk2g11�1
�i

k2xk
2
z

1þ ε

:

(34)
Eq. (34) is the approximate dispersion relation of P-wave in VTI
media. Based on Eq. (34), finally, the simplified time-space domain
pure-viscoacoustic TTI wave equation is given as
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To demonstrate the accuracy of the simplified pure-
viscoacoustic TTI wave equation (Eq. (35)), we generate the wave-
field snapshots at 0.5 s using the different wave equations. The
model parameters are the same as those in Fig. 3(a). The Ricker
wavelet with peak frequency of 25 Hz is located at the central of the
model, the time step is 0.001 s, the reference frequency is 25 Hz.
� sinð24Þ v2

vxvz

!
pþ

24Þkxkz
!
pþ

þ
�
cos4 4þ sin4

4� sin2ð24Þ
� v4

vx2vz2

cosð24Þsinð24Þ v4

vxvz3

1CCCCCAp

þ f :

(35)



Fig. 14. Wavefield snapshots at 0.5 s generated by different wave equation. (a) The coupled pseudo-viscoacoustic TTI wave equation derived by Qiao et al. (2020). (b) The pure-
viscoacoustic TTI wave equation proposed by Mu et al. (2022b). (c) The proposed pure-viscoacoustic TTI wave equation (Eq. (24)). (d) The proposed simplified pure-
viscoacoustic TTI wave equation (Eq. (35)).

Fig. 15. Comparisons of wavefield snapshots from Fig. 14(a)e(d) in wiggle forms. (a) The wavefields generated by the pure-viscoacoustic TTI wave equation derived by Mu et al.
(2022b) (Fig. 14(b)) (red dashed lines) and the reference wavefield (black solid lines). (b) The wavefields generated by the proposed pure-viscoacoustic TTI wave equation (Fig. 14(c))
(red dashed lines) and the reference wavefield (black solid lines). (c) The wavefields generated by the proposed simplified pure-viscoacoustic TTI wave equation (Fig. 14(d)) (red
dashed lines) and the reference wavefield (black solid lines).
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Fig. 16. The maximum relative error of the phase velocity and quality factor of the proposed simplified wave equation (Eq. (35)). (a) The maximum relative error of the phase
velocity; (b) The maximum relative error of the quality factor. The model parameters are the same as those in Fig. 2.
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Fig. 14 shows the wavefield snapshots at 0.5 s generated by the
different wave equations. The ranks of the low-rank decomposition
method are N1 ¼ 1 and N2 ¼ 1. Fig. 15 are the comparisons of
wavefield snapshots in a wiggle form. As pointed out by the black
arrows in Fig. 15, one can notice that the wavefield snapshots
generated by the proposed wave equation (Fig. 15(b)) and the
proposed simplified wave equation (Fig. 15(c)) are in better match
with the reference wavefield, in comparison with the previous
wave equation (Fig. 15(a)). This result suggests that both the pro-
posed wave equation and the proposed simplified wave equation
can accurately simulate the kinematic characteristic of P-wave in
attenuating anisotropic media. Additionally, compared to the pro-
posed wave Eq. (24), the proposed simplified wave Eq. (35) requires
less computational cost because it has concise expression. How-
ever, it also should be noted that the proposed simplified wave
equation has made more approximation than the proposed wave
equation (Eq. (24)) in the derivation of the wave equation. This
leads to the fact that the accuracy of the proposed simplified wave
equation is lower than the proposed wave equation. To further
fairly evaluate the accuracy of the proposed simplified wave
equation, we provide the maximum relative error of the phase
velocity and quality factor of the proposed simplified wave equa-
tion, as shown in Fig. 16. By comparing Fig. 16 with Fig. 2, we can
observe that the accuracy of the proposed simplified wave equation
is higher than the previous wave equations, while it is lower than
the proposed wave equation (Eq. (24)). As a result, from the above
analysis, we can see that the two types of proposed pure-
viscoacoustic anisotropic equations (i.e., Eqs. (24) and (35)) have
their features, and we can choose between them based on our
requirements.

Second, the numerical stability of wavefield simulation in
attenuating anisotropic media also has attracted a lot of interesting
(Mu et al., 2022b). We notice that although the pure-viscoacoustic
TTI wave equation is more stable than the coupled pseudo-
viscoacoustic TTI wave equation, numerical instability still occurs
when simulating in some regions with rapidly changing tilt angle
(Duveneck and Bakker, 2011; Yan and Liu, 2016). This numerical
instability can be attributed to the fact that the acoustic approxi-
mation is used and all spatial derivatives in the direction of the
anisotropic symmetry axis are neglected in the derivation of the
wave equation (Duveneck and Bakker, 2011; Mu et al., 2022b). To
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solve this problem, several measures (e.g., low-pass filter) can be
used to address the instability to stabilize the computation results
when simulating in complex media with a sharp tilt angle (Mu
et al., 2020). Nevertheless, the kinematic and dynamic accuracy of
the wavefield may be affected by these approaches to some extent.
Therefore, the development of an accurate and suitable method to
address these instabilities is our future work.

6. Conclusion

Based on the exact complex-valued dispersion relation in
viscoelastic VTI media, we derive a new pure-viscoacoustic TTI
wave equation in media with velocity anisotropy and attenuation
anisotropy. This equation contains decoupled phase dispersion and
amplitude dissipation terms, which makes it convenient to realize
Q-compensated RTM. Theoretical analysis and numerical experi-
ments demonstrate that our pure-viscoacoustic TTI wave equation
has higher accuracy than the previous pure-viscoacoustic TTI wave
equations in modeling seismic wave propagation in attenuating
anisotropic media. For numerical simulation, we develop the
HFDLRDmethod to solve the proposed pure-viscoacoustic TTI wave
equation. Numerical test of the simple two-layer shows that the
HFDLRD method can accurately calculate the seismic wave propa-
gation in attenuating anisotropic media with strong attenuation.
The newly derived pure-viscoacoustic TTI wave equation and the
proposed numerical simulation method can be used as forward
engines for viscoacoustic anisotropic RTM and FWI in attenuating
anisotropic media.
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Appendix A

The exact and approximate TTI complex-valued P-wave phase
velocity formulas

Starting from Eq. (3), we rotate the symmetry axis and the exact
complex-valued phase velocity formula for P-wave in the visco-
elastic TTI media can be written as

Vpðq;4Þ¼
�
1
2r

�
M11 sin

2ð4�qÞþM33 cos
2ð4�qÞþM55þE

��1=2
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Similarly, the proposed approximate complex-valued phase
velocity formula in TTI media can be expressed as
V2
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According to Eq. (36), Qiao et al. (2020) also give the expressions
of the directionally dependent phase velocity, quality factor and
attenuation coefficient of P-wave, which can be written as follows:

bvpðqÞ¼�Re� 1
Vp

���1
; (A-3)

bQ pðqÞ¼
Re
�
V2
p

�
Im
�
V2
p

� ; (A-4)

bapðqÞ¼ �uIm
�
1
Vp

�
: (A-5)
Appendix B

The HFDLRD method for solving the coupled pseudo-viscoacoustic
TTI wave equation

Qiao et al. (2020) proposed a coupled pseudo-viscoacoustic TTI
wave equation, which can be rewritten as
.
M33 �M11

i
sin2ð4� qÞcos2ð4� qÞ
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where sxx and szz denote the horizontal component and vertical
component of stress, respectively. fx and fz represent the horizontal
component and vertical component of source function, respec-
tively. According to the HFDLRD method illustrated previously, Eqs.
(B-1) and (B-2) can be reformulated as
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Finally, based on Eq. (31) and the finite-difference method, Eqs.
(B-3) and (B-4) can be conveniently solved by the HFDLRD method.
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