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a b s t r a c t

Seismic prediction of cracks is of great significance in many disciplines, for which the rock physics model
is indispensable. However, up to now, multitudinous analytical models focus primarily on the cracked
rock with the isotropic background, while the explicit model for the cracked rock with the anisotropic
background is rarely investigated in spite of such case being often encountered in the earth. Hence, we
first studied dependences of the crack opening displacement tensors on the crack dip angle in the co-
ordinate systems formed by symmetry planes of the crack and the background anisotropy, respectively,
by forty groups of numerical experiments. Based on the conclusion from the experiments, the analytical
solution was derived for the effective elastic properties of the rock with the inclined penny-shaped
cracks in the transversely isotropic background. Further, we comprehensively analyzed, according to
the developed model, effects of the crack dip angle, background anisotropy, filling fluid and crack density
on the effective elastic properties of the cracked rock. The analysis results indicate that the dip angle and
background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P- and
SH-wave velocities, whereas they have relatively small effects on the SV-wave velocity anisotropy.
Moreover, the filling fluid can increase the stiffness coefficients related to the compressional modulus by
reducing crack compliance parameters, while its effects on shear coefficients depend on the crack dip
angle. The increasing crack density reduces velocities of the dry rock, and decreasing rates of the ve-
locities are affected by the crack dip angle. By comparing with exact numerical results and experimental
data, it was demonstrated that the proposed model can achieve high-precision estimations of stiffness
coefficients. Moreover, the assumption of the weakly anisotropic background results in the consistency
between the proposed model and Hudson's published theory for the orthorhombic rock.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Cracks widely distributed in all kinds of subsurface rocks have
significant influences on the poroelastic, hydraulic and mechanical
properties of reservoir media. Therefore, it is a research focus to
characterize and predict the cracks in many fields, such as hydraulic
fracturing (Lu et al., 2020), CO2 sequestration (Kalra et al., 2018),
exploration and exploitation of oil and gas reservoirs (Chen et al.,
of Deep Oil and Gas, China
0, Shandong, China.

y Elsevier B.V. on behalf of KeAi Co
2018; Cheng et al., 2022). Rock physics models relating elastic co-
efficients to crack parameters are indispensable for accurately
evaluating the crack distribution of the subsurface. Numerous rock
physics models have been presented to calculate the effective
elastic parameters of the cracked rock, including the Kuster and
Toksoz model (Kuster and Toks€oz, 1974), the differential effective
medium model (Norris, 1985) and the self-consistent approxima-
tions model (O'Connell and Budiansky, 1974), and so forth. These
early theoretical models are applicable to the case of randomly
oriented cracks, whereas the subsurface cracks are frequently
aligned owing to geological tectonism and stress orientation (Xu
et al., 2018; Zhang et al., 2017; Zhao et al., 2020).

For the aligned cracks case, many researches have been
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implemented. Hudson (1980) derived an expression of the effective
stiffness matrix for the rock with isolated penny-shaped cracks in
the isotropic background with the hypothesis of weak scattering.
The expression is in the form of the sum of the background stiffness
matrix and the first- and second-order stiffness contribution ma-
trixes induced by the cracks. On this basis, Hudson (1988) and
Hudson et al. (1996) investigated effects of partially saturated
cracks and hydraulically connected cracks with fluid saturation on
the effective elastic properties of the rock, respectively. Cheng
(1993) also developed a model for calculating the effective stiff-
ness coefficients of the rock with a set of spheroidal cracks based on
Eshelby's static solution of the strain inside the inclusion. Although
Cheng's model still requires low crack density due to no consider-
ation of the interaction between cracks, it broadens the applicable
range of the crack aspect ratio. Different from these two types of
models, Schoenberg and Douma (1988) gave definitions of fracture
compliance contribution matrixes (Schoenberg called them the
fracture compliance matrixes) for fracture systems with different
types of elastic behaviors (including monoclinic and orthorhombic
behaviors, amongmany others). And the effective elastic matrix can
be obtained by inverting the sum of the isotropic background
compliance matrix and the fracture compliance matrix, which is
called the linear-slip model (Schoenberg and Douma, 1988).
Meanwhile, Schoenberg and Douma (1988) provided relationships
between the fracture compliance elements and the fracture density
only by comparing the linear-slip model with Hudson's model for
the isolated crack case. Therefore, the accuracy and scope of
application of the linear-slip model are the same as those of Hud-
son's model for the isolated crack case. In order to expand the scope
of application of the linear-slip model, many researchers
(Kachanov, 1992; Sevostianov and Kachanov, 1999) also derived the
fracture compliance elements as functions of the fracture density
based on the crack opening displacement (COD) tensor or the
Eshelby tensor (Eshelby, 1957). Furthermore, by combining the
linear-slip model and the anisotropic fluid substitution equation
(Brown and Korringa, 1975), Huang et al. (2015) and Guo et al.
(2017) analyzed effects of the fluid saturation on effective elastic
properties of the fractured rock.

All the above theoretical models assume the background me-
dium is isotropic. Nevertheless, naturally formed strata and even
synthetic rock samples have non-negligible layered characteristics
(Ding et al., 2017; Zhao et al., 2016a), which induces the VTI
(vertically transverse isotropy) background. Hence, it is crucial to
develop a rock physics model considering the effect of the VTI
background on effective elastic properties of the cracked rock. To
this end, Hoenig (1978) derived an integral form of the COD tensor
for an elliptical crack in a generally anisotropic background. He
further proved that the integral form can be simplified as a closed
form only for rocks with the VTI background permeated by the
elliptical crack parallel to the isotropic plane. Based on the explicit
COD tensor, changes in moduli can be calculated. Jakobsen et al.
(2003) and Zhao et al. (2016b) also deduced an integral expres-
sion for the effective stiffness tensor of the cracked rock with the
arbitrarily anisotropic background using the T-matrix approach to
study influences of elastic interactions between cracks on effective
elastic properties. Withers (1989) investigated the explicit expres-
sion of the Eshelby tensor for the spheroidal crack in the isotropic
plane of the VTI background and further calculated the effective
elastic matrix of the cracked rock. Schoenberg and Helbig (1997)
gave the expression of the effective stiffness matrix for the rock
with the VTI background containing parallel vertical cracks,
whereas relationships between the effective stiffness elements and
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the crack parameters are unknown. In addition, other studies have
also been implemented for effective elastic properties of the
cracked rock with the VTI background using other methods
(Sevostianov et al., 2005; Xu et al., 2020). However, all thesemodels
are explicit only for the case with spheroidal cracks parallel to the
isotropic plane of the VTI background, while for other more general
cases, they are complicated integral forms. Numerical calculations
of the integrals are required, which complicates applications of
these models to geophysical predictions of fractured formations.

To investigate the analytical solution linking effective elastic
properties of the rock with inclined cracks in the VTI background to
microstructural parameters (e.g., crack density and dip angle),
Hudson (1991) modeled the VTI background with an isotropic
medium containing horizontal penny-shaped cracks. The effective
elastic matrix of the rock with aligned cracks in the VTI background
can be estimated by taking the sum of the stiffness matrix of the
isotropic medium and two groups of stiffness correction matrixes
induced by the real cracks and the hypothetic cracks. However, this
result is inapplicable to the case with relatively high degrees of the
background anisotropy owing to underestimating elastic in-
teractions between the real cracks and the VTI background. And the
accuracy of the model depends on choice of the isotropic matrix
parameters. Besides, Guerrero et al. (2007) found through two
simple numerical experiments that the COD tensor of the circular
crack embedded in the elliptic VTI background might be weakly
dependent on the dip angle of the crack. Based on this conclusion,
Guo et al. (2019, 2021) deduced approximate expressions for the
effective elastic matrixes of rocks with the VTI backgrounds
permeated by tilted penny-shaped and elliptical cracks, respec-
tively. However, predicted results of the approximate solution have
relatively high errors in some cases (refer to the first subsection of
“Discussion”) and even are not entirely accurate for the isotropic
background (a type of elliptic anisotropy) case. Hence, more work
needs to be done to obtain a more reasonable and accurate explicit
solution for the effective stiffness matrix of the rock with the tilted
cracks in the VTI background.

In this work, we first study dependences of CODs on the crack
dip angle by forty groups of numerical experiments. Based on the
result of the experiments, we derive the explicit expression of the
compliance matrix of the rock with the tilted cracks in the VTI
background. According to the developed model, we further inves-
tigate effects of the crack dip angle, background anisotropy, fluid
and crack density on the effective elastic properties of the rock.
Finally, the proposed model is proven reasonable and of high pre-
cision by comparing with accurate numerical results and experi-
mental data. Moreover, it is consistent with the published theory
under the hypothesis of the weakly anisotropic background.
2. Theory

2.1. Theoretical background

As shown in Fig. 1, we consider a reference volume V containing
an ellipsoidal inclusion of a volume V*. The effective compliance

tensor Seff of the reference volume can be written as

seffijkl ¼ s0ijkl þ hijkl; (1)

where s0ijkl and hijkl denote the compliance tensor of the background

medium and the compliance contribution tensor of the inclusion,
respectively. The compliance tensor is the reciprocal of the stiffness



Fig. 1. Schematics of media with the VTI background containing aligned ellipsoidal inclusions. The inclusions are (a) parallel to and (b) inclined to the isotropic plane of the VTI
background, respectively. The plane xoy is parallel to the isotropic plane.
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tensor. The compliance contribution tensor H (hijkl) can be repre-
sented as follows (Sevostianov et al., 2005)

hijkl ¼ c*
��

s*ijkl � s0ijkl
��1 þ c0ijpq

�
Ipqkl � Ppqrsc0rskl

���1

; (2)

where the weight c* ¼ V*=V is the volume fraction of the inclusion
and s*ijpq is the compliance tensor of the inclusion. The symbols c0ijrs
and Iijkl denote the stiffness tensor of the background medium and
the unit fourth-order tensor, respectively. And Prspq is the Hill
tensor, which can be calculated by the integral of the Green func-
tion Gijðx�x0Þ of the background medium, that is,

Pijkl ¼ �1
4

ð
V

 
Gik

xjxl
þ Gjk

xixl
þ Gil

xjxk
þ Gjl

xixk

!
dVðx0 Þ

(Giraud et al., 2007). The repeated indices refer to the Einstein's
summation convention. Assuming that the number of the same
aligned inclusions is y in the reference volume V, their ith semi-axis
length is ai and there are no elastic interactions between the in-
clusions, the total compliance contribution tensor H of the empty
inclusions can be deduced as

hijkl ¼ 4c

h
c0ijpq

�
Ipqkl � Ppqrsc0rskl

� i�1
: (3)

In Eq. (3), 4c ¼ 4pa1a2a3y
3V denotes the porosity of the cavities. For

the penny-shaped crack modeled by an extremely oblate sphe-
roidal inclusion, a1 ¼ a2 ¼ a, and a ¼ a3 =a/0 defined as the
aspect ratio of the crack. Its porosity is 4c ¼ 4pa

3 e, where e ¼ a3y=V
is called the crack density. Since we neglect the elastic interactions
between the inclusions, Eq. (3) is applicable to the case of the rock
containing dilute concentration of cracks that is common under-
ground (Chen and Zhang, 2017; Liu et al., 2018). For simplicity, we
will next focus on the rock with dilute concentration of cracks. Note
that the interactions between the cracks and the anisotropic
background will be involved.

For any flat crack (with a tending to zero), the compliance
contribution tensor can also be obtained by (Seyedkavoosi et al.,
2018)

hijkl ¼
S
4V

�
niBjknl þ njBiknl þniBjlnk þnjBilnk

�
; (4)

where ni represents the ith component of the normal vector of the
flat crack surface. The symbol Smeans the area of the crack surface.
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The second-rank tensor B (Bij) is called the crack opening
displacement (COD) tensor, combining the average crack

displacement discontinuity vector b
.

with the uniform traction t
. ¼

s � n
.

induced by the remotely applied uniform stress field s at the

crack site in the absence of the crack, namely b
.

¼ B � t
.
. Accord-

ingly, the COD tensor B of the penny-shaped crack embedded in the
VTI background as in Fig. 1b can also be calculated from the known
H. Specifically, the explicit expressions of the derivatives of the
Green function for the VTI matrix are utilized to numerically esti-
mate the Hill tensor P (Pijkl) with the Gauss-Legendre quadrature
(Giraud et al., 2007). Then, the compliance contribution tensor H
calculated based on Eq. (3) is used to settle Eq. (4) for obtaining the
COD tensor B.

For the dry penny-shaped crack in the isotropic plane of the VTI
background, as shown in Fig. 1a, Fabrikant (1989) gave an analytical

form of the COD tensor Bhor. We rewrite the analytical form in
terms of Thomsen's anisotropic parameters as

Bhor11 ¼ Bhor22 ¼ 16aG

3pc033
h
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g

p
Gþ c033

�
1þ 2ε� x2

� ffiffiffi
g

p i ;
(5)

Bhor33 ¼ 8aG

3p
�
c033
�2�1þ 2ε� x2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð1þ 2εÞp ; (6)

G¼ c033

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
� x
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ε
p

þ xþ 2g
�r

(7)

and other components are zero. In Eqs. (5) and (6), Bhor11 (or Bhor22 )

and Bhor33 represent the tangential and normal CODs of the crack in
the isotropic plane of the VTI background, respectively. The symbol
c0ij denotes the stiffness matrix of the VTI background in the Voigt's

concise form. The variables g ¼ c044=c
0
33 and x ¼ � gþ ð1 �

gÞ½1þ 2d=ð1� gÞ�1=2. Thomsen's anisotropic parameters ε ¼ c011�c033
2c033

,

g ¼ c066�c044
2c044

and d ¼ ðc013þc044Þ
2�ðc033�c044Þ

2

2c033ðc033�c044Þ
(Thomsen, 1986). By substitut-

ing Eqs. (5) and (6) into Eq. (4), we can obtain the analytical solution
of the compliance contribution tensor H. However, for the inclined
penny-shaped crack, we cannot directly give the analytical forms of
its exact compliance contribution tensor H and COD tensor B,
owing to difficulty in obtaining the exact analytical expression of its
Hill tensor.
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Bymaking ε, g and d equal zero in Eqs. (5)e(7), we can derive the
COD tensor of the dry crack in the isotropic background, which
reflects the normal and tangential CODs in the crack plane without
the effect of background anisotropy. The difference between the
normal and tangential CODs can be deduced as

�
Bhor22 � Bhor33

�			
ε;g;d¼0

¼ 4a
3pgc033

1� 2g
ð3� 2gÞð1� gÞ

					
ε;g;d¼0

: (8)

For the isotropic medium, g means the square of the ratio of the
S-wave velocity to the P-wave velocity and its value varies from 0 to
0.5 due to Poisson's ratio ranging from 0 to 0.5. This results in

ðBhor22 � Bhor33 Þ
			
ε;g;d¼0

>0, which implies the tangential COD of the dry

penny-shaped crack in the isotropic background is larger than the
normal COD for most cases. This characteristic is called the intrinsic
property of the crack. Fig. 2 demonstrates effects of c033, ε, g, d and g

on Bhor33 and Bhor22 of the dry penny-shaped crack in the isotropic
plane of the VTI background. From Fig. 2a, it can be found that the
effects of c033 on Bhor22 and Bhor33 are almost identical, which are caused
Fig. 2. Variations of Bhor22 and Bhor33 with
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by the fact that both Bhor22 and Bhor33 are linear functions of ðc033Þ
�1

.

Fig. 2b, 2c and 2e indicates that Bhor22 and Bhor33 decrease with ε, g and

g increasing and influences of ε, g and g on Bhor22 are larger than

those on Bhor33 . Fig. 2d reveals that the increasing rate of Bhor33 with d is

higher than that of Bhor22 . By integrating Fig. 2aee, we can draw
conclusions that with increases of the ε, g and d, the increasing
effects of the background anisotropy on the CODs induce that
ðBhor22 �Bhor33 Þ varies from greater than zero to less than zero.

Therefore, when ðBhor22 � Bhor33 Þ>0, it can be considered that the
intrinsic property of the crack has the leading influences on the
CODs. When ðBhor22 � Bhor33 Þ<0, we can think that the effects of the
background anisotropy on the CODs surpass those of the intrinsic
property of the crack and become dominant influences.

2.2. Approximate explicit solution of COD tensor of a dry tilted
penny-shaped crack in the VTI background

The compliance contribution tensor is the function of the COD
tensor, as given in Eq. (4). We will study the explicit expression of
(a) c033, (b) ε, (c) g, (d) d and (e) g.



Fig. 3. Comparison between the xyz system (solid lines) and the x0y0z0system (dashed
lines).
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the COD tensor in order to derive the analytical form of the effective
elastic matrix of the rock with inclined cracks in the VTI back-
ground. For such rock, we adopt two coordinate systems to char-
acterize its properties, as shown in Fig. 3. One is the xyz system
represented by three orthogonal solid lines, which has been applied
in Fig. 1. The other is the x0y0z0 system represented by three
orthogonal dashed lines, inwhich the x0 axis is accordant with the x
axis and the z0 axis is normal to the crack plane. Obviously, for the
isotropic background case (in which the intrinsic property of the
crack is the main influence factor of the CODs), the COD tensor in
the x0y0z0 system is independent of the crack dip angle. A second-

order tensor Ab in the xyz system can be transformed into a new
representation An in the x0y0z0 system and the transformation form
is

Ab
ij ¼ LimA

n
mnLjn (9)

and

L¼
2
41 0 0
0 cos z sin z
0 �sin z cos z

3
5: (10)

In Eq. (10), z is the dip angle of the crack, which equals the angle
between the z axis and z0 axis as shown in Fig. 3.

Forty groups of VTI rocks are used as background media to
analyze the dependence of the COD tensor of the dry penny-shaped
crack on the crack dip angle. The first 35 groups of the VTI rocks are
induced by aligned arrangement or crystal lattice of minerals, and
their measured stiffness coefficients are shown in Table Ae1 of
Appendix A. The last 5 groups of the VTI rocks are induced by
horizontal aligned fractures in an isotropic matrix consisting of 80
percent quartz and 20 percent clay by volume. The bulk moduli,
shearmoduli andmass densities of the quartz and clay are 76.8 GPa,
32 GPa, 2.71 g/cm3, and 21 GPa, 7 GPa, 2.6 g/cm3, respectively. The
horizontal fractures with an aspect ratio of 0.01 are filled with the
fluid with the bulk modulus of 1 GPa, and their densities are 0,
0.0125, 0.025, 0.0375 and 0.05 in sequence. The Voigt-Reuss-Hill
average is utilized to calculate properties of the isotropic matrix
and the Eshelby-Cheng model (Cheng, 1993) is adopted to estimate
stiffness coefficients of the last 5 groups of the VTI rocks. The
penny-shaped crack is simulated by the spheroidal inclusion with
the aspect ratio of 0.01, and its dip angle ranges from 0� to 90�. The
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COD tensors of the designed models can be calculated by Eqs. (3)
and (4). Moreover, the COD tensor in the xyz system can be trans-
formed into the COD tensor in the x0y0z0system by using Eqs. (9) and
(10), namely

Bn ¼ LTBbL (11)

where

Bb ¼

2
6664
Bb11 Bb12 Bb13

Bb12 Bb22 Bb23

Bb13 Bb23 Bb33

3
77775 and Bn¼

2
6664
Bn11 Bn12 Bn13

Bn12 Bn22 Bn23

Bn13 Bn23 Bn33

3
77775: (12)

In Eq. (11), Bb and Bn represent the COD tensors expressed in the
xyz and x0y0z0 systems, respectively. We define changes of the CODs
of the crack inclined by z degrees relative to the CODs of the hor-
izontal crack as

D**
ij ðzÞ ¼

			B*ijðzÞ � B*ijðz ¼ 0+Þ
			.B*ijðz ¼ 0+Þ ði; j ¼ 1; 2; 3Þ:

(13)

In Eq. (13), the operator j � j means taking the absolute values.

The symbol B*iiðzÞ represents the ij element of Bb or Bn of the crack

with the z dip angle and D**
ij is the relative change of the ij element.

Fig. 4 demonstrates variations of the CODs and D**
ii of the crack in

the 10th VTI background with respect to the dip angle. Fig. 5 dis-
plays variations of ratios of the off-diagonal elements to the 3rd
diagonal element of the COD tensor of the crack in the 10th VTI
background with the dip angle. The descriptions of Figs. 6 and 7 are
similar to those of Figs. 4 and 5, respectively, with the exception of
the VTI background parameters from the 17th group. Fig. 8 exhibits
relative differences between Bhor22 and Bhor33 of the dry cracks in the
isotropic planes of forty groups of VTI backgrounds, and the relative
differences are calculated by

DH
COD¼ 2

�
Bhor22 �Bhor33

�.�
Bhor22 þBhor33

�
: (14)

The sign of DH
COD is the same as that of ðBhor22 � Bhor33 Þ. From Fig. 4,

we can find that for the 10th VTI background case, the diagonal
elements of the COD tensor are less dependent on the crack dip
angle in the x0y0z0 system than in the xyz system. The reason is that

DH
COD >0 for the 10th VTI background case, as seen in Fig. 8. The

intrinsic property of the crack is the major influence factor of the
CODs. Hence, the diagonal elements of the COD tensor vary more
feebly with the dip angle in the x0y0z0 system than in the xyz system.
Comparing Fig. 5a with 5b, it can be seen that for the 10th VTI
background case, the ratios of the off-diagonal components to the
3rd diagonal component of the COD tensor are far smaller in the
x0y0z0 system than in the xyz system. In consequence, the off-
diagonal components of the COD tensor in the x0y0z0 system are

negligible for the case with DH
COD >0. Analogously, Fig. 6 illustrates

that the diagonal elements of the COD tensor are less dependent on
the dip angle in the xyz system than in the x0y0z0 system for the 17th

VTI background case. The result is caused by the fact that DH
COD <0

for the 17th VTI background case, as shown in Fig. 8. The back-
ground anisotropy is the dominant influence factor of the CODs.
Fig. 7 reveals that the ratios of the off-diagonal elements to the 3rd
diagonal component of the COD tensor in the xyz system are
comparatively small and smaller than those in the x0y0z0 system for
the 17th VTI background case. Hence, the off-diagonal components
of the COD tensor in the xyz system can be set to zero with



Fig. 4. Comparisons between dependences of diagonal elements of the COD tensors in the xyz system (red lines) and the x0y0z0 system (green lines) on the dip angle of the crack in
the 10th VTI background. Fig. (a), (c) and (e) shows the variations of Bii (i ¼ 1, 2, 3) with the dip angle, respectively. Fig. (b), (d) and (f) demonstrates variations of D**

ii (i ¼ 1, 2, 3) with
the dip angle, respectively.

Fig. 5. Variations of ratios of the off-diagonal elements to the 3rd diagonal element of the COD tensor of the crack in the 10th VTI background with the dip angle. The COD tensors
are in (a) the x0y0z0 system and (b) the xyz system, respectively.
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Fig. 6. Comparisons between dependences of diagonal elements of the COD tensors in the xyz system (red lines) and the x0y0z0 system (green lines) on the dip angle of the crack in
the 17th VTI background. The descriptions of Fig. (a)e(f) are similar to those of Fig. 4aef.

Fig. 7. Variations of ratios of the off-diagonal elements to the 3rd diagonal element of the COD tensor of the crack in the 17th VTI background with the dip angle. The COD tensors
are in (a) the x0y0z0 system and (b) the xyz system, respectively.
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Fig. 8. DH
COD of dry cracks in the isotropic planes of forty VTI backgrounds.
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satisfactory accuracies for the case with DH
COD <0. In conclusion, for

the dry tilted penny-shaped crack permeating in the VTI back-

ground, when DH
COD < 0, the COD tensor in the xyz system can be

approximately estimated by Bhor, that is,

BbzBhor; (15)

when DH
COD >0, the COD tensor in the x0y0z0 system is very close to

Bhor so that Bn ≈Bhor. Using Eq. (11), the approximation of Bn can be
further transformed into the COD tensor in the xyz system, namely

Bb ¼ LBnLT z LBhorLT ¼

2
6664
Bhor11 0 0

0 Bb22 Bb23

0 Bb23 Bb33

3
77775; (16)

where Bb22 ¼ cos2 zBhor11 þ sin2 zBhor33 , Bb33 ¼ sin2 zBhor11 þ cos2 zBhor33 ,

Bb23 ¼ cos z sin zðBhor33 � Bhor11 Þ.
To further verify the above conclusion, Eqs. (15) and (16) are

utilized to estimate COD tensors of dry tilted cracks in forty groups
of VTI backgrounds, respectively, and errors of the estimations are
measured by

L**
ij ðzÞ ¼

			B**ij ðzÞ � BijðzÞ
			.BijðzÞ ði; j ¼ 1; 2; 3Þ: (17)

In Eq. (17), BijðzÞ denotes the accurate COD tensor of the crack
with the dip angle of z, which is calculated with Eqs. (3) and (4).
B**ij ðzÞ is the corresponding estimation. L**

ij ðzÞ represents the error

of the estimation. Fig. 9 shows the maximums of L**
ii ðzÞ with

respect to the dip angle z for forty VTI background cases. Fig. 9a
reveals that the estimations of the 1st diagonal element from Eqs.
(15) and (16) have equal accuracy. We also find that the blue pen-
tagrams in Fig. 9b and c match with those in Fig. 8 well with the
exception of the 27th sample. Therefore, the estimation from Eq.

(15) is optimal for the case with DH
COD <0, and the estimation from

Eq. (16) is better for the case with DH
COD >0, which well verifies the

previous conclusion. For the 27th VTI background, the value of g is

0.54, which leads to DH
COD

		
ε;g;d¼0 <0. Fig. 2b and c implies that Bhor22

and Bhor33 increase with the decreasing anisotropic parameters ε and
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g and the increasing rate of Bhor22 is larger than that of Bhor33 . Conse-
quently, the negative anisotropic parameters ε and g of the 27th VTI

background cause the change of the sign of DH
COD, that is, D

H
COD >

0 (as seen in Fig. 8), which suggests the background anisotropy
becomes the main influence on the CODs. Hence, Eq. (15) is better
for estimating the COD tensor of the crack in the 27th VTI back-

ground (as in Fig. 9), although DH
COD > 0. The finding from the 27th

case is contrary to that from other 39 cases, but the rock with
g > 0.5 and negative anisotropic parameters ε and g is extremely
infrequent underground. Therefore, the conclusion from other 39
cases expounded by Eqs. (15) and (16) has wider applicability.

Integrating Eqs. (15) and (16), we can approximately derive the
final analytical solution of the COD tensor of the dry inclined cir-
cular crack in the VTI background as

B¼
2
4B11 0 0

0 B22 B23
0 B23 B33

3
5; (18)

where B11 ¼ Bhor11 , B22 ¼ Bhor11 þ ln
�
Bhor33 � Bhor11

�
sin2 z, B33 ¼ Bhor33 þ

ln
�
Bhor11 � Bhor33

�
sin2 z, and B23 ¼ ln

�
Bhor33 � Bhor11

�
sin z cos z. In Eq.

(18), ln ¼ 1 for DH
COD > 0, and ln ¼ 0 for DH

COD < 0. Note that Eq. (18)
is the expression in the xyz system.
2.3. Effective elastic properties for the rock with a tilted set of
penny-shaped cracks in the VTI background

Rotation of the crack around the z axis cannot change the
effective elastic properties of the rock with a tilted set of penny-
shaped cracks in the VTI background. Hence, we set the angle be-
tween the y axis and the projection of the symmetry axis of the
crack onto the xoy plane to zero degree. As shown in Fig.1b, the unit
direction vector of the symmetry axis of the crack

n¼ð0; sin z; cos zÞ: (19)

Substituting Eqs. (18) and (19) into Eq. (4), the compliance
contribution matrix Hc of an aligned set of dry tilted penny-shaped
cracks embedded in the VTI background can be expressed in the
form of the Voigt's concise notation, namely



Hc ¼ pe
a

sin z cos z�
2
66666666666666664

0 0 0 0 0 0

0 B22 tan z B23 B22 þ B23 tan z 0 0

0 B23 B33 cot z B33 þ B23 cot z 0 0

0 B22 þ B23 tan z B33 þ B23 cot z B22 cot zþ B33 tan zþ 2B23 0 0

0 0 0 0 B11 cot z B11

0 0 0 0 B11 B11 tan z

3
77777777777777775

; (20)
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where cot z ¼ ðtan zÞ�1. Eq. (20) ignores effects of the elastic in-
teractions between cracks on effective properties, which is appli-
cable to the case for the rock containing dilute concentration of
cracks. Hence, the effective compliance matrix Seff of the overall
rock is

Seff ¼ S0 þHc: (21)

The compliancematrix S0 of the VTI background is the inverse of
Fig. 9. Maximum errors of the estimations of the (a) 1st, (b) 2nd and (c) 3rd diagonal eleme
angle. The red and green lines indicate the maximum errors of the estimations from Eqs. (15
less than that of Eq. (16). Note the y-axis is the logarithmic axis.
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the stiffness matrix C0, namely

S0 ¼
�
C0
��1 ¼

2
4 S01 0

0 S02

3
5; (22)

where
nts of the COD tensors of the dry crack in forty VTI backgrounds with respect to the dip
) and (16), respectively. The blue pentagram signifies the maximum error of Eq. (15) is



:

S01 ¼ 1
4

2
66664
2c033

.
cþ 1

.
c066 2c033

.
c� 1

.
c066 �4c013

.
c

2c033
.
c� 1

.
c066 2c033

.
cþ 1

.
c066 �4c013

.
c

�4c013
.
c �4c013

.
c 4

�
c011 þ c012

�.
c

3
777775; S02 ¼

2
66664
1
.
c044 0 0

0 1


c044 0

0 0 1


c066

3
777775
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and c ¼ c033ðc011 þ c012Þ� 2ðc013Þ
2
. Likewise, the effective stiffness

matrix Seff of the overall rock can be obtained by inverting the
effective compliance matrix Seff .

Brown and Korringa (1975) published a fluid substitution
equation for an anisotropic medium, which can be written as

Ssateff ¼ S0 þHc þ F: (23)

For this equation, Ssateff is the effective compliance matrix of the
saturated rock. The matrix F represents the compliance change
caused by the fluid filling cracks. Substituting Eqs. (20)e(22) into
Eq. (23) and taking the inverse of the result yields the elastic
stiffness matrix of the saturated rock. If the background anisotropy
is induced by the horizontally oriented fractures, the cracks will be
hydraulically connected with the horizontal fractures. Huang et al.
(2015) has investigated the effects of the pore fluid on elastic
properties and seismic responses of the saturated rock for this case.
If the VTI background is formed by the aligned arrangement or
crystal lattice of minerals, such as shale, and the porosity of the
background is very low, the tilted cracks may be hydraulically
connected with each other but isolated from the background ma-
trix. For the sake of simplicity, we focus on the impacts of the fluid
on the elastic responses of the rock in the second case. Whereupon,
the ij component of the compliance change matrix F can be spe-
cifically written as

Fij ¼ �

P3
a¼1

hcia
P3
b¼1

hcbj

P3
p¼1

P3
q¼1

hcpq þ 4c

�
1
.
Kf � 1

.
Kg

� ði; j ¼ 1; 2; 3; 4; 5; 6Þ;

(24)

where Kf is the bulk modulus of the fluid and hcpq is the pq element
of the compliance contribution matrix of the dry cracks. And Kg ¼
c =ðc011 þ c012 þ 2c033 � 4c013Þ.

For the case of the horizontal cracks, z ¼ 0+ and the compliance
contribution matrix of the dry cracks can be simplified as

Hhor
c ¼

2
6666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ZhorN 0 0 0

0 0 0 ZhorT 0 0

0 0 0 0 ZhorT 0

0 0 0 0 0 0

3
7777777777777775

; (25)

where the superscript ‘hor’ means the horizontal cracks. The
symbols ZN and ZT denote the normal and tangential compliance
parameters of the cracks, respectively, and
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ZhorN ¼pe
a
Bhor33 ; (26)

ZhorT ¼pe
a
Bhor11 : (27)

Obviously, Eqs. (26) and (27) are independent of ln. Substituting
Eqs. (22) and (25) into Eq. (21) and taking the inverse of the result
yields

Choreff ¼C0 þ Chorc ; (28)

where the stiffness contribution matrix induced by the horizontal
cracks is

Chorc ¼

�

2
66666666666666666664

�
c013
�2

c033
Dhor
N

�
c013
�2

c033
Dhor
N c013D

hor
N 0 0 0

�
c013
�2

c033
Dhor
N

�
c013
�2

c033
Dhor
N c013D

hor
N 0 0 0

c013D
hor
N c013D

hor
N c033D

hor
N 0 0 0

0 0 0 c044D
hor
T 0 0

0 0 0 0 c044D
hor
T 0

0 0 0 0 0 0

3
7777777777777777777777775

(29)

In Eq. (29), DN and DT are named the normal and tangential
weakness parameters, respectively, and

Dhor
N ¼ c033Z

hor
N

1þ c033Z
hor
N

; (30)

Dhor
T ¼ c044Z

hor
T

1þ c044Z
hor
T

: (31)

Substituting Eq. (25) into (24), all components of the excess
compliance matrix F equal zero with the exception of

Fhor33 ¼ �
�
ZhorN

�2
ZhorN þ 4c

�
1
.
Kf � 1

.
Kg

� : (32)

In consequence, the normal and tangential compliance param-
eters of the saturated cracks, namely Zhor sat

N and Zhor sat
T , can be

defined as
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Zhor sat
N ¼ ZhorN þ Fhor33 ; (33)

Zhor sat
T ¼ ZhorT : (34)

Substituting Zhor sat
N for ZhorN in Eqs. (28)e(30), we can derive the

effective stiffness matrix Chor sat
eff of the saturated rock.

For the case of the vertical cracks, z ¼ 90+ and the compliance
contribution matrix of the dry cracks can be simplified as

Hver
c ¼

2
6666666666664

0 0 0 0 0 0

0 ZverN 0 0 0 0

0 0 0 0 0 0

0 0 0 ZverV 0 0

0 0 0 0 0 0

0 0 0 0 0 ZverH

3
777777777777775

; (35)

where the superscript ‘ver’ signifies the vertical crack case. The
symbols ZV and ZH represent the vertical and horizontal compli-
ance parameters, respectively, and

ZverN ¼ pe
a

h
ð1� lnÞBhor11 þ lnBhor33

i
; (36)

ZverV ¼ pe
a

h
lnBhor11 þ ð1� lnÞBhor33

i
; (37)

ZverH ¼pe
a
Bhor11 : (38)

Substituting Eqs. (22) and (35) into Eq. (21) and taking the in-
verse of the result gives

Cvereff ¼C0 þ Cverc ; (39)

where the stiffness contribution matrix induced by the vertical
cracks is

Cverc ¼

�

2
66666666666666666664

�
c012
�2

c011
Dver
N c012D

ver
N

c012c
0
13

c011
Dver
N 0 0 0

c012D
ver
N c011D

ver
N c013D

ver
N 0 0 0

c012c
0
13

c011
Dver
N c013D

ver
N

�
c013
�2

c011
Dver
N 0 0 0

0 0 0 c044D
ver
V 0 0

0 0 0 0 0 0

0 0 0 0 0 c066D
ver
H

3
7777777777777777777777775

:

(40)

In Eq. (40), DV and DH are named the vertical and horizontal
weakness parameters, respectively, and
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Dver
N ¼ c011Z

ver
N

1þ c011Z
ver
N

; (41)

Dver
V ¼ c044Z

ver
V

1þ c044Z
ver
V

; (42)

Dver
H ¼ c066Z

ver
H

1þ c066Z
ver
H

: (43)

Similar to the horizontal crack case, substituting Eq. (35) into Eq.
(24) gives the matrix in which all elements equal zero except

Fver22 ¼ �
�
ZverN

�2
ZverN þ 4c

�
1
.
Kf � 1

.
Kg

� : (44)

Thereupon, the compliance parameters of the vertical saturated
crack can be defined as

Zver sat
N ¼ ZverN þ Fver22 ; (45)

Zver sat
V ¼ ZverV : (46)

Zver sat
H ¼ ZverH : (47)

As a result, we can derive the effective stiffness matrix Cver sat
eff of

the saturated rock by replacing ZverN in Eqs. (39)e(41) with Zver sat
N .

3. Numerical cases

3.1. Parameters

For the cracked medium as shown in Fig. 1b, the velocities
propagating in the y-z plane reflect not only the anisotropy induced
by the aligned cracks, but also the anisotropy caused by the VTI
background. Therefore, a numerical model is designed to analyze
the effects of the background anisotropy, filled fluid, crack dip
angle, and crack density on the effective elastic properties of the
crackedmedium and the P- and S-wave velocities traveling in the y-
z plane. Parameters of a tight sand sample with a relatively high
degree of VTI anisotropy, c011 ¼ 47.31 GPa, c033 ¼ 33.89 GPa,

c012 ¼ 7.83 GPa, c013 ¼ 5.29 GPa, c044 ¼17.15 GPa and the mass density
r ¼ 2.504 g/cm3, utilized by Guo et al. (2019) are introduced in
order to better compare the results in this paper with those given
by Guo et al. (2019). Unless otherwise specified, aligned cracks with
the crack density of 0.05 and the aspect ratio of 0.001 are added
into the VTI background to simulate the cracked rock. And the effect
of the aligned cracks on the mass density of the overall medium is
negligible and then the mass density of the cracked medium can be
assumed to be 2.504 g/cm3. The bulk modulus of the fluid filling the
cracks is 2.5 GPa. Dry and saturated effective stiffness parameters of
the designed cracked rock can be estimated by taking the inverse of
the results of Eqs. (21) and (23), respectively. The phase velocities of
the P and S waves can be calculated by Eqs. (B-1)e(B-4) in
Appendix B. Meanwhile, a cracked rock with the isotropic back-
ground that has the stiffness parameters c011 ¼ 47.31 GPa and

c012 ¼ 7.83 GPa is also designed as a reference medium using the
above method.

3.2. Effects of crack dip angle, background anisotropy and fluid

Fig. 10 demonstrates the nine stiffness coefficients of the



Fig. 10. Variations of stiffness coefficients of the cracked media with the crack dip angle. The rocks contain dry cracks in the (a) VTI and (b) isotropic backgrounds, respectively. The
rocks contain saturated cracks in the (c) VTI and (d) isotropic backgrounds, respectively.
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cracked media varing with the crack dip angle because other co-
efficients are either zero or much smaller than these nine co-
efficients and are thus not analyzed. For the dry cracked rock,
Fig. 10a and b shows that ceff11 is nearly independent of the crack dip
angle regardless of the degree of the background anisotropy. With
the increase of the crack dip angle from 0� to 90�, ceff22 and ceff66

gradually decrease, and ceff33 and ceff55 monotonously increase

whether the background is anisotropic or isotropic. And ceff44 is
slightly dependent on the crack dip angle. These variations can be
explained by the fact that stiffness coefficients of the rock are
functions of reciprocals of corresponding compliance coefficients
according to the formula of matrix inversion. The variations of the
stiffness coefficients with the crack dip angle are basically consis-
tent with those of the reciprocals of the corresponding compliance
parameters. According to Eqs. (20) and (21), the element seff11 is not

affected by the aligned cracks. Hence, the reciprocal of seff11 is un-

related to the crack dip angle. The reciprocals of seff22 and seff66 are both

functions of sin�2 z and the reciprocals of seff33 and seff55 are both

functions of cos�2 z. The functions sin�2 z and cos�2 z are mono-
tonically decreasing and increasing functions within the range of
the dip angle from 0� to 90�, respectively. The dependence of seff44 on
232
the dip angle is determined by
			Bhor33 � Bhor11

			. From Fig. 2, we can

conclude that the value of
			Bhor33 �Bhor11

			 is smaller than that of Bhor11

for most cases so that the reciprocal of seff44 is weakly dependent on

the dip angle. Fig.10a and b also illustrates that variations of ceff12 and

ceff13 with the crack dip angle are similar to those of ceff22 and ceff33 ,

respectively. Moreover, ceff23 is weakly dependent on the crack dip
angle. These are due to that the off-diagonal elements of the stiff-
ness contribution matrix represent the coupled information of the

diagonal elements, for example,
			chorc12

			 in matrix (29) is equal to the

square root of chorc11 multiplying chorc22. Background parameters are
independent of the crack dip angle so that the variation of the off-
diagonal effective stiffness parameter with the crack dip angle is a
coupled response of those of the corresponding diagonal parame-
ters. Furthermore, ceff11 has extremely weak dependence on the

crack dip angle. Therefore, variations of ceff12 and ceff13 with the crack

dip angle are similar to those of ceff22 and ceff33 , respectively. The

change of ceff22 with the crack dip angle is opposite to that of ceff33 and

in consequence, ceff23 is weakly dependent on the crack dip angle.
According to Eqs. (Be1) and (Be3), the velocities of the P waves



Fig. 11. Variations of P-, SV- and SH-wave phase velocities with the incident angle w. Figures (a) and (c) correspond to the horizotal crack case, and Figures (b) and (d) the vertical
crack case. The dashed and solid lines represent the isotropic and VTI backgrounds cases, respectively. Superscripts ‘dry’ and ‘sat’ denote the dry and saturated rocks, respectively.
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vertically (w ¼ 0�, where w represents the angle between the inci-
dent direction and the z-axis) and horizontally (w ¼ 90�) propa-
gating in the y-z plane are determined by ceff33 and ceff22 , respectively.
The velocities of the SH waves vertically and horizontally propa-
gating are determined by ceff55 and ceff66 , respectively. Hence, the
variations of the stiffness coefficients as analyzed above will cause
increases of the vertical P- and SH-wave velocities and decreases of
the horizontal P- and SH-wave velocities with the increasing crack
dip angle. In order to illustrate these more clearly, Fig. 11 shows the
phase velocities changing with the incident angle w for the cases
with horizontal and vertical cracks, respectively. We can obviously
observe the larger vertical P- and SH-wave velocities and the
smaller horizontal P- and SH-wave velocities for the dry vertical
crack case than for the dry horizontal crack case. It can be further
inferred that the increase of the dip angle may make the P-wave
velocity anisotropy decrease to zero first, and then increase
inversely. The specific change of the P-wave velocity anisotropy is
related to the degree of background anisotropy. The effect of the dip
angle on the SH-wave velocity anisotropy is similar to that of the P
wave. These indicate the great influence of the crack dip angle.
Additionally, for the SV-wave velocity of the dry crack case, Fig. 11c
and d demonstrates that its change with the crack dip angle is
relatively small. However, its trends with the incident angle w are
opposite for two cases of the horizontal cracks and the vertical
cracks in the VTI background. For the case of the horizontal cracks
233
in the VTI background, the SV-wave velocity minimizes when wz
45� or 135�, whereas it peaks at these incident angles for the case of
the vertical cracks. This is due to that the background anisotropy is
approximate elliptical (namely ε z d) so that similar to that in an
isotropic medium, the SV-wave velocity in the VTI background
medium is nearly independent of the incident angle. It causes that
properties of the aligned cracks control the trend of the SV-wave
velocity with the incident angle. Eqs. (28), (39) and (B-2) disclose
that the SV-wave velocity at the 0� incident angle principally de-
pends on the vertical compliance ZV, while that at the 45� incident
angle is mainly influenced by the normal compliance ZN. The
smaller values of ZV and ZN induce the bigger SV-wave velocities at
the incident angles of 0� and 45�, respectively. Consequently, the
relative value between ZN and ZV determines the variation of the
SV-wave velocity with the incident angle. For the case of the hor-
izontal cracks in the VTI background, ZN (0.0074 GPa�1) is slightly
bigger than ZV (also called ZT, 0.0067 GPa�1) so that the SV-wave
velocity at the 45� incident angle is slightly smaller than that at
the 0� incident angle. For the case of the vertical cracks in the VTI
background, ZN (0.0067 GPa�1) is slightly smaller than ZV
(0.0074 GPa�1), which leads to the reverse variation of the SV-wave
velocity with the incident angle. Besides, for the two cases of the
horizontal and vertical cracks in the isotropic background, the SV-
wave velocities at the 45� incident angle should be equal to each
other. The values of ceff44 should also be the same as each other,
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which determine the SV-wave velocities at the incident angle of
0� or 90�. In consequence, the trends of the SV-wave velocities with
the incident angle should be similar to each other for the two cases,
as shown by the magenta dashed lines in Fig. 11c and d. However,
Guo et al. (2019) gave reverse trends of the SV-wave velocities with
the incident angle for the two cases (as shown by green dashed
lines in Figs. 4b and 8b of Guo et al. (2019)). Moreover, for the case
of the vertical cracks in the isotropic background, ceff44 should be

equal to ceff66 . Hence, according to Eqs. (B-2) and (B-3), the SH-wave
velocity (the saffron dashed line in Fig. 11d) is equal to the SV-wave
velocity (the magenta dashed line in Fig. 11d) when the incident
angle reaches 90�. Nevertheless, the blue and green dashed lines in
Fig. 8b of Guo et al. (2019) show that these two velocities are
different at the 90� incident angle. These suggest that the solution
proposed in this paper is more reasonable than that given by Guo
et al. (2019) for the case with a weakly anisotropic background.

By comparing Fig. 10a with 10b, it can be found that substitution
of the VTI background for the isotropic background has little effects
on ceff11 , c

eff
22 and ceff66 with the exception of a little smaller ceff22 and ceff66

for the vertical cracks case. This is owing to the fact that the VTI
background has the same c011 and c066 as the isotropic background.

Eqs. (29) and (40) reveal that ceff22 and ceff66 of the horizontal cracks

case and ceff11 have very small sensitivities on the crack compliance
parameters. Therefore, they are nearly constant with the back-
ground medium varying from the isotropic medium to the aniso-
tropic medium. For the vertical cracks case, the increasing degrees
of the background anisotropy cause the increases of ZN (from
0.0058 GPa�1 to 0.0067 GPa�1) and ZH (from 0.0062 GPa�1 to
0.0067 GPa�1) and hence, ceff22 and ceff66 of the VTI background case
are smaller than those of the isotropic background case according
to Eqs. (39) and (40). Additionally, c033, c044 and c055 gradually
decrease with the increases of the background anisotropic param-
eters ε and g. In consequence, ceff33 , c

eff
44 and ceff55 are smaller for the

VTI background case than for the isotropic background case ac-
cording to Eqs. (28) and (39), as shown in Fig. 10a and b. Moreover,
with substituting the VTI background for the isotropic background,
ceff13 and ceff23 will also be lower owing to the decrease of ceff33 , while

ceff12 is hardly affected due to very weak changes in ceff11 and ceff22 .
These changes in the effective stiffness coefficients will lead to

changes in the phase velocities, as shown in Fig. 11. For the dry
horizontal cracks case (Fig. 11a and c), as the degree of the back-
ground anisotropy increases, both the P- and SH-wave velocities at
the normal incidence decrease and both the velocities at the inci-
dent angle of 90� are almost constant. Thus, the VTI background can
enhance the degrees of the P- and SH-wave velocities anisotropy,
which are consistent with the experiment results given by Ding
et al. (2017, Figs. 7e10). Fig. 11c also reveals that existence of the
VTI background not only reduces the SV-wave velocity, but also
changes the trend of the SV-wave velocity with the incident angle.
This is due to that existence of the VTI background not only reduces
ceff44 , but changes the relative value between ZN and ZT. For the
vertical cracks case (Fig. 11b and d), the VTI background reduces
both the vertical and horizontal P-wave velocities, but the hori-
zontal velocity decreases less. The change of the SH-wave velocity
is similar to that of the P-wave velocity. Therefore, we can infer that
the anisotropies of the P- and SH-wave velocities decrease first and
then increase with the increasing degrees of the background
anisotropy, which are similar to experiment results given by Silva
et al. (2019, Figs. 5 and 6). From Fig. 11d, it can be seen that exis-
tence of the VTI background makes the SV-wave velocity decrease
owing to smaller ceff44.

When the aligned cracks are saturated with fluid, variations of
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the nine stiffness coefficients with the crack dip angle are shown in
Fig. 10c and d. For the two cases of the horizontal and vertical
cracks, it can be seen from Fig. 10c and d that fluid saturation makes
the elements related to the compressional moduli (namely ceff11 , c

eff
22 ,

ceff33 , c
eff
12 , c

eff
13 and ceff23 ) larger and has no effects on the shear moduli

(ceff44 , c
eff
55 and ceff66 ). This results from that fluid saturation reduces the

value of ZN, whereas does not change the values of ZV and ZH (or ZT),
as given by Eqs. (33), (34) and (45)e(47). Thus, the stiffness co-
efficients related to ZN will be bigger and the shear moduli related
to ZT will be constant according to Eqs. (29) and (40). The increases
of the compressional moduli induce the bigger P-wave velocities
(blue lines in Fig. 11a and b) and the bigger SV-wave velocities at
the incident angles of around 45� and 135� (cyan lines in Fig. 11c
and d). The constant shear moduli cause no changes of the SH-wave
velocities (black lines in Fig. 11c and d) and the SV-wave velocities
at the incident angles of 0� and 90�. Furthermore, ceff22 of the hori-

zontal cracks case, ceff33 of the vertical cracks case and ceff11 change
very slowly with the increasing modulus of the fluid filling the
cracks, due to their less sensitivities to ZN. It makes the horizontal P-
wave velocity of the horizontal cracks case and the vertical P-wave
velocity of the vertical cracks case increase very little, as shown in
Fig.11a and b. Therefore, we can conclude that degrees of the P- and
SV-wave velocities anisotropy depend on the modulus of fluid
filling the cracks. Conversely, the degree of the SH-wave velocity
anisotropy is unrelated to the fluidmodulus. For the casewith tilted
cracks, fluid saturation can also increase the elements related to the
compressional moduli and has no effects on ceff55 and ceff66 . Never-
theless, F44 can be proven to be nonzero (exactly speaking, be
negative) by substituting Eq. (20) into Eq. (24). As a result, the filling
fluid will weaken the effect of the aligned cracks on ceff44 and make

the value of ceff44 larger, as shown by the cyan solid lines in Fig. 10c
and d.

3.3. Effect of crack density

The analyses in the previous subsection confirm that the ve-
locities of the overall rock have higher sensitivities to the dry crack
than the saturated crack. Moreover, maximums and minimums can
be utilized to describe the characteristics of a function. Thus, this
subsection mainly investigates variations of maximum and mini-
mum velocities with the crack density for two cases of the vertical
and horizontal dry cracks. The maximum and minimum velocities
refer to the vertical and horizontal velocities for the P and SHwaves
and the SV-wave velocities at the 0� and around 45� incident
angles.

Fig. 12 illustrates variations of the vertical and horizontal ve-
locities with the crack density. Fig. 12a and b manifests that the P-
wave velocities decrease approximately linearly with the crack
density whether the aligned cracks are horizontal or vertical.
However, the sensitivities (namely the slopes of the lines) of the P-
wave velocities parallel to the crack plane to the crack density are
extremely weak and far smaller than those of the P-wave velocities
normal to the crack plane. These observations agree with some
published experiment results (Ding et al., 2017; Shuai et al., 2020;
Silva et al., 2019). Fig. 12a and b also reveals that the change of the
background medium has little influence on the sensitivity of the P-
wave velocity to the crack density. Likewise, the increase of the
crack density slightly changes the sensitivities of the P-wave ve-
locity to the background parameters for the case with the crack
density less than 0.05. This is due to the fact that the P-wave ve-
locity depends on the effective stiffness coefficients, and domi-
nating contributions of the background medium and the cracks to
the effective stiffness coefficients are nearly independent of each



Fig. 12. Vertical (red lines) and horizontal (blue lines) velocities versus the crack density: (a and b) The P-wave velocities, (c and d) the SH-wave velocities. ‘BG’ represents
‘background medium’.

Fig. 13. SV-wave velocities at the (a) normal and (b) 45� incident angles versus the crack density. The meaning of the legend is identical with that in Fig. 12.
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other as clarified by Eqs. (28) and (39). Furthermore, Fig. 11a and b
demonstrates that the effects of the fluid on the P-wave velocities
parallel to the crack plane are very small. Therefore, we can first
give rough estimations about cracks parameters and fluid modulus,
235
and then use the P-wave velocity parallel to the crack plane to
predict the background parameters. Sil (2013) has used the vertical
velocities from well logs to predict the parameters of the isotropic
background.



Fig. 14. Errors of the predicted ceff11 versus the crack dip angle. The red and blue lines
correspond to the approximate solutions given in this paper and by Guo et al. (2019),
respectively.
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Based on Fig. 12c and d, it can be concluded that the SH-wave
velocity normal to the crack plane decreases linearly with the
crack density. Nevertheless, the SH-wave velocity parallel to the
crack plane is independent of the crack density, which results from
the facts that the ceff55 of the vertical crack case and ceff66 of the hor-
izontal crack case are unrelated to the crack density according to
Eqs. (29) and (40). These conclusions are consistent with the
experiment results given by Ding et al. (2017) and Silva et al. (2019).
Similar to the P-wave velocity, the change of the background
parameter has little effect on the sensitivity of the SH-wave velocity
to the crack density. The increase of the crack density hardly
changes the sensitivities of the SH-wave velocity to the background
parameters. Besides, the filling fluid has no influence on the SH-
wave velocity. Therefore, the SH-wave velocity parallel to the
crack plane is another better choice to predict the background
parameters. Fig. 13 illustrates that the SV-wave velocity is also a
linearly decreasing function of the crack density. The background
anisotropy and the incident angle have little effects on the sensi-
tivity of the SV-wave velocity to the density of the dry crack. By
comparing the dashed lines in Fig. 13, we infer that the SV-wave
velocity depends very weakly on the dip angle of the dry crack in
the isotropic background. Accordingly, the SV-wave velocity has
potential applications in estimating the density of randomly ori-
ented dry cracks in the isotropic background.
Fig. 15. Errors of predicted nine effective stiffn
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4. Discussion

4.1. Numerical verification of approximate solution accuracy

The conclusions in the above section are draw based on the
proposed approximate solution illuminated by Eqs. (20)e(22).
Although many conclusions have been justified by comparisons
with other published studies, the accuracy of the proposed
approximate solution still needs further verification. For the case

with DH
COD < 0, the proposed approximate solution is equivalent to

that given by Guo et al. (2019), which has been proved to be of high

accuracy by a numerical experiment. For the casewith DH
COD > 0, the

stiffness parameters of the 26th sample (possessing big DH
COD, as

shown in Fig. 8) in Table A-1 are utilized to assess the accuracy of
the approximate solution by comparing with accurate results. The
aspect ratio and density of the aligned cracks are set to 0.001 and
0.05, respectively. The accurate result can be obtained by the
method given in the “Theoretical background”. Fig. 14 shows vari-
ations of the errors of the approximate ceff11 with the crack dip angle.

The error is measured by substituting ceffij for Bij in Eq. (17). From

Fig. 14, we can find that the errors of the predicted ceff11 gradually
increase with the crack dip angle and reach the maximums at the
dip angle of 90�. For the horizontal crack case, both estimations
based on our and Guo's approximate solutions are consistent with
the accurate result. Nevertheless, the accuracy of our approximate
solution is higher than that of Guo's for the non-horizontal crack
case. Additionally, we calculate the errors of estimations of nine
stiffness coefficients obtained by our and Guo's approximate solu-
tions for the vertical crack case, as show in Fig. 15. We can see that
the maximum error in Guo's estimations exceeds 9%, while the
maximum error in our predictions is around equal to 2%. Therefore,
the accuracy of our approximate solution is higher than that of

Guo's approximate solution for the case with DH
COD > 0. In a

conclusion, the proposed analytical solution for the effective elastic
properties of the rock with the inclined circle cracks in the VTI
background possesses the satisfactory accuracy.

4.2. Comparison with experimental data

To further demonstrate rationality and accuracy of the proposed
approximate solution, we compare theoretical predictions of our
solution with the ultrasonic measurements on a synthetic cracked
sample by Silva et al. (2019). The synthetic sample is formed by
vertical squared cracks in a layered background. Firstly, a mixture of
fine sand, cement and water was poured into an acrylic model until
the formation of a layer. This procedure was repeated to manu-
facture the VTI background. Furthermore, squared styrofoam cuts
with an area of 4 cm2 and a width of 0.08 cm were placed
perpendicular to the first layer of deposition. After the sample was
ess parameters for the vertical crack case.



Fig. 16. Comparisons of predicted velocities (blue lines) of the (a) P, (c) SV and (d) SH waves in the y-z plane and (b) P wave in the x-z plane with measured velocities (red rectangles)
of an orthorhombic sample (Silva et al., 2019).
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dry, it was sprayed with water twice a day for eight days and then
placed into an oven for about 2 h to make it rigid. Finally, the
complete styrofoam cuts were dissolved by paint thinner to
generate empty aligned squared cracks and the dry orthorhombic
sample was complete. A reference sample (without cracks) with a
volume of 128.795 cm3 is utilized to obtain the property of the VTI
background from the ultrasonic measurement. The mass density
(r0) and porosity of the reference sample are 1.911 g/cm3 and
15.27%, respectively. In the y direction, the P-wave (Vpy) velocity is
3626.7m/s and the shear velocity of thewave polarized in the x axis
(Vsxy) is 2227.3 m/s. In the z direction, the P-wave (Vpz) velocity is
3402 m/s and the shear velocity of the wave polarized in the x axis
(Vszx) is 2065.4 m/s. Therefore, stiffness coefficients of the reference
sample can be calculated by (Mavko et al., 2009)

c011 ¼ c022 ¼ r0V
2
py; c

0
33 ¼ r0V

2
pz; c

0
44 ¼ c055 ¼ r0V

2
szx; c

0
66

¼ r0V
2
sxy and c012 ¼ c011 � 2c066: (48)

Since the P- and S-wave velocities at the 45� incident angle were
not measured, we cannot obtain c013 of the reference sample. Ac-
cording to the procedure of making the synthetic sample, we
choose a relationship between c013 and other stiffness coefficients to

estimate c013, which is given by (Yan et al., 2019)
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c013 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c033
�
c011 � 2c066

�q
: (49)

Experimental data on the synthetic sample with three parallel
vertical cracks are employed to compare with predictions of the
proposed approximate solution. The mass density and porosity of
the synthetic cracked sample are 1.821 g/cm3 and 16.44%, respec-
tively. Its volume (Vc) is 138.145 cm3. The proposed approximate
solution requires that the crack is penny-shaped. Thus, we equate
the squared crack in this experiment with the penny-shaped crack,
then the effective crack density of the penny-shaped cracks can be

calculated by e ¼ NcðS=pÞ1:5=Vc, where Nc is the number of the
cracks and S represents the average area of the cracks plane.
Because the background porosity of the cracked sample is different
from that of the reference sample, the stiffness parameters of the
reference sample cannot be directly regarded as those of the VTI
background of the cracked sample even if their mineral composi-
tions are the same. We combine the Backus average theory (Backus,
1962) with the critical porosity model to convert the stiffness pa-
rameters of the reference sample into those of the VTI background
of the cracked sample. The conversion formulas are derived in
Appendix C.

After obtaining the effective crack density and the stiffness pa-
rameters of the VTI background of the synthetic cracked sample, its
effective stiffness parameters can be predicted using Eqs.
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(36)e(43). Then the phase velocities can be estimated using Eqs. (B-
1)e(B-6), which are displayed in Fig. 16. The errors of the predicted
results can be assessed by substituting the velocities for Bij in Eq.
(17). From Fig. 16, we can find that the predicted results are in good
agreement with the experimental data and the maximum error is
less than 3%, which proves our solution reasonable again. Never-
theless, it should be noted that the crack is actually square in this
orthorhombic sample, which does not satisfy the assumption of the
proposed approximate solution. And c013 of the synthetic reference
samplewas notmeasured. In the future, the experiment data on the
orthorhombic sample with the vertical penny-shaped cracks are
required to further verify our solution. Besides, the aligned cracks of
the current synthetic samples are either parallel or perpendicular
to the isotropic plane of the VTI background. To the best of our
knowledge, no experimental data have been measured for a syn-
thetic sample with aligned cracks inclined to the isotropic plane of
the VTI background. Thus, we will try to manufacture such syn-
thetic sample to further validate our model.
4.3. Stiffness contribution matrix of non-inclined cracks in weakly
anisotropic background

The VTI rocks with weak anisotropy are rather common in the
subsurface (Thomsen, 1986). When the VTI background is weakly
anisotropic, jεj, jgj and jdj «1 and then we can neglect terms con-

taining ε
2, d2, εg, εd and gd in Eq. (7). Thus, Gzc033

ffiffiffiffiffiffi
4g

p �
1 þ 1þg

4g ε þ
g�1
4g d

�
, xz1� 2g þ d so that Eqs. (5) and (6) can be simplified as

Bhor11 ¼ Bhor22 z
16a

3pc033gð3� 2gÞ

�
1þ g2 þ 1

2gð2g � 3Þ εþ
1

2g � 3
g

þ g2 þ 2g � 1
2gð2g � 3Þ d

�
;

(50)
Chorc ¼ � c033

2
66666666666664

ð1� 2gÞ2Dhor
N ð1� 2gÞ2Dhor

N ð1� 2gÞDhor
N 0

ð1� 2gÞ2Dhor
N ð1� 2gÞ2Dhor

N ð1� 2gÞDhor
N 0

ð1� 2gÞDhor
N ð1� 2gÞDhor

N Dhor
N 0

0 0 0 gDhor
T

0 0 0 0

0 0 0 0

238
Bhor33 z
4a

3pc033gð1� gÞ

�
1þ5g2 � 4g þ 1

4gðg � 1Þ εþ g2 þ 2g � 1
4gðg � 1Þ d

�
:

(51)

Owing to the hypothesis of the small crack density, the terms
containing εe, ge and de can also be omitted. For the dry horizontal
crack case, by substituting Eqs. (50) and (51) into Eqs. (26) and (27),
the crack compliance parameters can be approximated as

ZhorN ¼ pe
a
Bhor33 z

4e
3c033gð1� gÞ; Z

hor
T ¼ pe

a
Bhor11 z

16e
3c033gð3� 2gÞ :

(52)

Further, the crack weakness parameters can be written as linear
functions of the crack density, namely

Dhor
N z c033Z

hor
N ¼ 4e

3gð1� gÞ;D
hor
T zc044Z

hor
T ¼ 16e

3ð3� 2gÞ : (53)

According to the definitions of the Thomsen's parameters, we
can obtain

c011 ¼ð1þ2εÞc033; c066 ¼ ð1þ2gÞgc033

c013 ¼
n
� gþð1� gÞ½1þ 2d=ð1� gÞ�1=2

o
c033zð1�2gþ dÞc033

(54)

Substituting Eqs. (53) and (54) into Eq. (29) and neglecting the
second-order terms of the Thomsen's parameters and the crack
density, the stiffness contribution matrix of the dry horizontal
cracks in weakly anisotropic background can be derived as
0 0

0 0

0 0

0 0

gDhor
T 0

0 0

3
77777777777777775

(55)



Fig. 17. Variations of errors of approximate stiffness parameters with DH
COD. (a) c11, (b) c22, (c) c33, (d) c44, (e) c55, (f) c66, (g) c12, (h) c13, and (i) c23.
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If the background medium is further assumed to be isotropic,
stiffness contribution Eq. (55) will be consistent with the first-order
term of the Hudson model (Hudson, 1980, Eq. (51)).

It can be inferred from Fig. 2 that when the VTI background
Cverc z � c033

2
6666666666664

ð1� 2gÞ2Dver
N ð1� 2gÞDver

N ð1� 2gÞ2Dver
N 0

ð1� 2gÞDver
N Dver

N ð1� 2gÞDver
N 0

ð1� 2gÞ2Dver
N ð1� 2gÞDver

N ð1� 2gÞ2Dver
N 0

0 0 0 gDver
V

0 0 0 0

0 0 0 0
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possesses weak anisotropy, DH
COD >0 so that ln ¼ 1 in Eqs.

(36)e(38). Therefore, for the case of the dry vertical cracks, anal-
ogous to derivations in the dry horizontal crack case, Eq. (40) can be
simplified to
0 0

0 0

0 0

0 0

0 0

0 gDver
H

3
7777777777777775

(56)



Z.-Q. Ma, X.-Y. Yin, Z.-Y. Zong et al. Petroleum Science 21 (2024) 221e243
where

Dver
N z

4e
3gð1� gÞ;D

ver
V zDver

H z
16e

3ð3� 2gÞ (57)

Hudson (1991) pointed out that weakly anisotropic material
could be modeled as an isotropic matrix containing aligned cracks.
We utilize an isotropic matrix with horizontal cracks to model the
VTI background and the compressional and shear moduli of the
isotropic matrix are c033 and c044, respectively. Thus, stiffness
contribution Eq. (56) will be identical with the first-order pertur-
bation of the stiffness contribution matrix of the vertical cracks in
the weakly anisotropic VTI background given by Hudson (1991, Eq.
(31)). The above analyses prove once again that themodel proposed
in this paper is reasonable.

It can be found from Eqs. (55) and (56) that the stiffness
contribution matrixes of the non-inclined cracks only depend on
the crack density, c033 and g for the case of the weakly anisotropic
background. Therefore, it is possible to utilize only vertical P- and S-
wave velocities from seismic or other data for predicting the crack
density in the field with approximately constant g. This is not the
focus of this paper. More detailed studies will be implemented in
the future.

4.4. Effect of background anisotropy degree on the accuracy of the
approximate solution

According to the investigation in the above subsection, the error
of the approximate solution is largest for the vertical crack case.
Consequently, we will only discuss the effect of the background
anisotropy degree on the accuracy of the approximate solution of
the vertical crack case. It can be inferred from Fig. 2 that when g is
constant, ðBhor22 �Bhor33 Þ will decrease with the increase of the degree

of the background anisotropy, so that DH
COD will decrease from

positive to negative. Therefore, DH
COD can be utilized as an overall

measure of the degree of the background anisotropy, that is, the

smaller value of DH
COD reflects the higher degree of the background

anisotropy.
Forty groups of stiffness coefficients of the VTI media employed

in Fig. 8 are utilized to calculate the effective stiffness coefficients of
dry rocks with the VTI background permeated by the vertical
cracks. The aspect ratio and density of the crack are 0.001 and 0.05,
respectively. The exact effective stiffness coefficients can be ob-
tained by combining Eqs. (1) and (3). The approximate stiffness
coefficients are calculated using Eqs. (39)e(43). The error of the
approximate value is measured by substituting cij for Bij in Eq. (17).

Fig. 17 shows variations of the errors with DH
COD. The green circle in

Fig. 17 corresponds to the 27th sample. Because the property of the
27th sample is very scarce in the subsurface, the green data point
will be ignored in the following discussion. The circles in other
colors correspond to the cases with different values of g, respec-
tively, as illustrated by the legend in Fig. 17e. From Fig. 17aed and
17f-i, it can be seen that the errors of c11, c22, c33, c44, c66, c12, c13
and c23 decrease approximately linearly with the increase of DH

COD.
From Fig. 17e, we find that the error of c55 is almost independent of

the value of DH
COD. This is due to the fact that the errors in predicting

stiffness parameters are mainly generated by the approximations of
the crack weakness parameters and the numerical rounding of the
calculation process. According to Eqs. (39) and (40), c55 of the
vertical crack case is unrelated to the crack weakness parameters.
Hence, the errors exhibited in Fig. 17e come only from the nu-
merical rounding of the calculation process and are independent of

the value of DH
COD. Likewise, c11 is less dependent on the crack
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weakness parameters according to Eq. (40), so that its total error is
very small as shown in Fig. 17a. Consequently, the random error
caused by the numerical rounding accounts for a relatively high
proportion of the total error, which results in the black circles in
Fig. 17a being more dispersed than those in other Figures. Based on
the above discussions, we conclude that the higher degree of the
background anisotropy may lead to the lower accuracy of the
approximate solution without consideration of the numerical
rounding.
5. Conclusions

In this work, we studied the effective elastic properties of the
rock with the inclined penny-shaped cracks in the transversely
isotropic background. By forty groups of numerical experiments,

we have confirmed that when DH
COD > 0, the CODs are less depen-

dent on the crack dip angle in the coordinate formed by the crack
plane. Conversely, the CODs are less dependent on the crack dip
angle in the coordinate formed by the symmetry axes of the VTI
background. From this conclusion, the COD tensor of the circle
crack in the isotropic plane of the VTI background was then
approximately extended to the case with cracks inclined to the
isotropic plane. Using the relationship between the COD tensor and
the crack compliance contribution tensor, we further derived the
analytical forms of the effective compliance matrixes of the dry and
saturated rocks with the tilted cracks in the VTI background,
respectively.

To analyze the effects of the crack dip angle, background
anisotropy, filling fluid and crack density on the effective elastic
properties of the cracked rock, we investigated two tight sand
cracked samples with the VTI and isotropic backgrounds, respec-
tively. The growing crack dip angle may make the anisotropy of the
P- and SH-wave velocities reduce to zero first, and then increase
inversely, but the specific effects are related to the crack density and
the degree of the background anisotropy. The background anisot-
ropy also has noteworthy influences on the anisotropy of the P- and
SH-wave velocities, and the influences are dependent on the crack
density and the dip angle. Unlike the P- and SH-wave velocities, the
crack dip angle and the background anisotropy have relatively
small effects on the change of the SV-wave velocity with the inci-
dent angle. For the non-inclined cracks case, filling fluid only raises
the stiffness coefficients related to the compressional modulus.
However, for the inclined cracks case, filling fluid also changes the
stiffness coefficients related to the shear modulus besides those
related to the compressional modulus. Additionally, the back-
ground anisotropy slightly modifies decreasing rates of the veloc-
ities with the crack density. The crack dip angle has great influences
on the decreasing rates of the P- and SH-wave velocities with the
crack density, while its effect on the decreasing rate of the SV-wave
velocity needs further researches in the future. For the vertical
crack case with the weak background anisotropy, the proposed
model is consistent with Hudson's published first-order correction
theory for the orthorhombic rock developed by two orthogonal sets
of aligned cracks. The exact numerical results and experimental
data demonstrated that the proposed model could realize pre-
dictions of effective stiffness coefficients with high accuracies.
Nevertheless, it may be difficult to acquire the relatively accurate
estimation with this model for the case with extremely strong
background anisotropy. Meantime, the proposed model requires
the crack to be penny-shaped and its concentration to be dilute.
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Appendix A. The 35 groups of measured data of VTI rocks

We collect the 35 groups of the stiffness coefficients of rock
samples from a variety of the VTI strata, as in Table A-1.
Table A-1
Measured stiffness coefficients and densities of 35 rock samples.

No. Rock samples, depth, ft C11, GPa C3

1 Mesaverde mudshale (4903)1 55.204 51
2 Mesaverde immature sandstone (4912)1 59.803 50
3 Mesaverde immature sandstone (4946)1 47.503 41
4 Mesaverde silty limestone (5469.5)1 72.297 65
5 Mesaverde immature sandstone (5555.5)1 57.225 51
6 Mesaverde laminated siltstone (5566.3)1 60.127 50
7 Mesaverde immature sandstone (5837.5)1 56.394 53
8 Mesaverde immature sandstone (6455.1)1 52.889 47
9 Mesaverde immature sandstone (6542.6)1 56.496 48
10 Mesaverde mudshale (6563.7)1 70.350 68
11 Mesaverde sandstone (7888.4)1 63.179 59
12 Mesaverde mudshale (7939.5)1 57.045 49
13 Mesaverde shale (350)2 30.391 26
14 Mesaverde shale (1599)2 51.182 40
15 Mesaverde shale (1968)2 71.130 63
16 Mesaverde shale (3511)2 71.759 53
17 Mesaverde shale (3883)2 51.546 41
18 CottonValley shale3 74.727 58
19 Pierre shale4 11.237 10
20 Green River shale15 43.319 40
21 Green River shale25 47.043 44
22 Berea sandstone6 38.009 37
23 Bandera sandstone6 33.236 31
24 Lance sandstone7 60.842 61
25 Ft. Union siltstone7 67.407 61
26 Timber Mtn tuff7 56.906 54
27 Quartz crystal8 79.570 98
28 Apatite crystal8 154.44 12
29 “Sandstone-shale"9 21.737 21
30 “SS-anisotropic shale"9 23.687 21
31 “Anisotropic shale"9 21.264 17
32 “Gas sand-water sand"9 4.207 4.
33 Brine-saturated Africa shales (7815.0)10 32.22 27
34 Brine-saturated tight sands (11868.4)10 73.27 70
35 Gas-saturated tight sands (11868.4)10 60.93 54

1Thomsen (1986), 2Lin (1984), 3Tosaya (1982), 4White et al. (1983), 5Podio et al. (1968), 6K
(2002).
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Appendix B. Phase velocity of the orthorhombic linear elastic
rock

For the orthorhombic linear elastic medium, the phase velocities
of seismic waves in the different coordinate planes can be calcu-
lated using the effective stiffness parameters (Mavko et al., 2009).
The phase velocities of the waves propagating in the y-z plane can
be expressed as follows:
3, GPa C44, GPa C66, GPa C13, GPa r,
g £ cm¡3

.689 18.411 20.105 24.405 2.520

.086 19.796 21.815 14.751 2.500

.164 13.484 15.264 14.604 2.450

.015 22.103 25.064 20.614 2.630

.094 18.159 19.794 21.412 2.480

.869 17.173 18.753 38.255 2.570

.914 19.823 20.339 14.373 2.470

.820 16.396 20.758 21.843 2.450

.704 16.219 19.235 16.119 2.510

.970 24.087 23.846 21.615 2.680

.267 21.184 20.379 19.199 2.500

.092 16.242 17.801 22.427 2.660

.895 13.968 15.951 0.458 2.350

.174 18.989 19.977 1.707 2.640

.171 27.031 28.545 9.609 2.690

.392 26.105 34.302 1.181 2.810

.040 20.059 24.071 3.910 2.920

.840 22.049 29.987 25.290 2.640

.910 2.113 2.239 7.316 2.250

.111 13.663 14.483 13.183 2.310

.803 15.400 16.016 16.371 2.310

.858 15.187 15.339 8.228 2.140

.355 12.112 12.839 8.493 2.160

.457 21.681 21.898 17.162 2.430

.841 22.489 24.288 13.975 2.600

.717 8.026 9.712 36.993 2.330

.477 53.210 36.289 13.745 2.650
9.349 61.989 71.784 59.456 3.218
.187 6.402 6.850 8.362 2.340
.187 6.402 8.488 8.362 2.340
.632 5.321 8.993 6.972 2.340
030 1.235 1.245 1.632 2.030
.2 6.85 8.66 14.45 2.408
.41 21.91 24.1 24.95 2.639
.15 21.05 23.7 12.87 2.598

ing (1964), 7Schock et al. (1974), 8Simmons andWang (1971), 9Levin (1979), 10Wang
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�
c44 þ c22 sin2

wþ c33 cos2 wþ
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�
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VSV ¼
�
c44 þ c22 sin2

wþ c33 cos2 w�
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VSH ¼
 
c66 sin2

wþ c55 cos2 w

r

!1=2

; (B-3)

where cij and r are the ij stiffness element and the mass density of
the overall orthorhombic medium, respectively. w represents the
angle between the incident direction and the z-axis and the
expression of G is

G¼
�
c22 sin2

wþ c44 cos2 w
��

c44 sin2
wþ c33 cos2 w

�
� ðc23 þ c44Þ2sin2

wcos2 w: (B-4)

The velocity of the P wave propagating in the x-z plane can be
expressed as follows:
VP ¼
�
c55 þ c11 sin2 bþ c33 cos2 bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c55 þ c11 sin2 bþ c33 cos2 b

�
2�4J

r �1=2

ð2rÞ�1=2; (B-5)
where b represents the angle between the incident direction and
the z-axis and the expression of J is

J¼
�
c11 sin2 bþ c55 cos2 b

��
c55 sin2 bþ c33 cos2 b

�
� ðc13 þ c55Þ2sin2 bcos2 b: (B-6)
c011b ¼ CMb �M�1
b ðMb � 2mbÞ2Dþ CM�1

b D
�1

CðMb � 2mbÞM�1
b D

2

¼ ð1� 4b=4crÞ
ð1� 4a=4crÞ

h
CMa �M�1

a ðMa � 2maÞ2Dþ CM�1
a D

�1
CðMa � 2maÞM�

a

¼ c011að1� 4b=4crÞ=ð1� 4a=4crÞ:
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Appendix C. Stiffness parameters conversion from reference
sample to VTI background of cracked sample

We can transform the stiffness parameters of the reference
sample into those of the VTI background of the cracked sample by a
transformation formula. Taking c011 as an example, we give deri-
vation of the transformation formula. The reference sample and the
VTI background of the cracked sample both consist of many
isotropic layers. Assume that the compressional and shear moduli
of each layer are equal to M and m, respectively, and the porosity of
each layer is 4. According to the critical porosity model,

M¼Mmð1�4 =4crÞ and m¼mmð1�4 =4crÞ; (C-1)

where the subscript ‘m’ indicates the matrix of each layer. 4cr de-
notes the critical porosity and is set to 0.31 in this paper. Based on
the Backus average theory (Backus, 1962),

c011 ¼ CM�M�1ðM � 2mÞ2Dþ CM�1D�1CðM � 2mÞM�1D2; (C-2)

where the operator C �D indicates taking the average by volume.
Assuming that the subscript ‘a’ and ‘b’ represent the reference
sample and the VTI background of the cracked sample, respectively.
Mma ¼ Mmb and mma ¼ mmb. Therefore, c011b of the VTI background
of the cracked sample is
1D
2i (C-3)
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Likewise, other stiffness parameters of the VTI background of
the cracked sample can be expressed as

c0ijb ¼ c0ijað1�4b =4crÞ = ð1�4a =4crÞ: (C-4)
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