
lable at ScienceDirect

Petroleum Science 21 (2024) 195e205
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
An adaptive finite-difference method for seismic traveltime modeling
based on 3D eikonal equation

Bao-Ping Qiao a, **, Qing-Qing Li b, *, Wei-Guang He c, Dan Zhao a, Qu-Bo Wu a

a CNNC Beijing Research Institute of Uranium Geology, Beijing 100029, China
b National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, Shangdong, China
c SINOPEC Geophysical Research Institute, Nanjing, 211103, Jiangsu, China
a r t i c l e i n f o

Article history:
Received 15 November 2022
Received in revised form
24 June 2023
Accepted 14 September 2023
Available online 16 September 2023

Edited by Jie Hao and Meng-Jiao Zhou

Keywords:
3D eikonal equation
Accurate traveltimes
Global fast sweeping
3D inhomogeneous media
Adaptive finite-difference method
* Corresponding author.
** Corresponding author.

E-mail addresses: qiaobaoping@briug.cn (B.-P.
(Q.-Q. Li).

https://doi.org/10.1016/j.petsci.2023.09.013
1995-8226/© 2023 The Authors. Publishing services b
creativecommons.org/licenses/by/4.0/).
a b s t r a c t

3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has
been widely applied in many scopes such as ray tracing, source localization, reflection migration, seismic
monitoring and tomographic imaging. In recent years, many advanced methods have been developed to
solve the 3D eikonal equation in heterogeneous media. However, there are still challenges for the stable
and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media. In this paper,
we propose an adaptive finite-difference (AFD) method to numerically solve the 3D eikonal equation. The
novel method makes full use of the advantages of different local operators characterizing different
seismic wave types to calculate factors and traveltimes, and then the most accurate factor and traveltime
are adaptively selected for the convergent updating based on the Fermat principle. Combined with global
fast sweeping describing seismic waves propagating along eight directions in 3D media, our novel
method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points
either near source point or far away from source point even in a velocity model with large and sharp
contrasts. Several numerical examples show the good performance of the AFD method, which will be
beneficial to many scientific applications.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In local seismic exploration or global earthquake research,
seismic first-arrival traveltimes are important for many applica-
tions such as seismic statics (Zhu et al., 2014), diving wave to-
mography (Mel�endez et al., 2015; Feng et al., 2020; Yang et al.,
2021), depth migration (Cheng et al., 2016), earthquake location
(Li et al., 2018) and hydraulic fracturing induced seismicity moni-
toring (Tan et al., 2020). The eikonal equation, which is one part of
the decompositions of seismic wave equation in high frequency, is
the govern equation for the calculation of seismic first-arrival
traveltimes (Engquist and Runborg, 2003). Because the eikonal
equation is the static Hamilton-Jacobi equation with no analytical
solution in general (Kao et al., 2005), many numerical methods
such as ray tracingmethod (�Cervený and Hron,1980), fast marching
Qiao), 20170069@upc.edu.cn
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level set method (Sethian, 1996), neural network method (Waheed
et al., 2021) and finite-difference (FD) method (Vidale, 1988) have
been developed to solve the eikonal equation for an accurate
seismic first-arrival traveltimes in isotropic media with various
velocity. For anisotropic (Alkhalifah, 1998, 2003; Stovas and
Alkhalifah, 2012; Stovas, 2015; Berkar et al., 2022) and attenuate
(Hao and Alkhalifah, 2017a, 2017b) media, accurate traveltimes can
also be evaluated by solving the corresponding acoustic eikonal
equations with developed numerical methods.

In the above numerical methods, FD method is a more efficient
method and has been widely used for many scopes, such as tran-
sient electromagnetic modeling (Li and Huang, 2014), seismic wave
simulation (Thorbecke and Draganov, 2011; Guo et al., 2022) and
first-arrival traveltime calculation. Vidale first proposed FDmethod
to rapidly solve the eikonal equation with 2D and 3D (Vidale, 1990)
numerical models with slowly varying velocities, respectively.
Although comparisons with ray tracing method showed that FD
method can fulfill the calculation of first-arrival traveltimes with a
higher precision, it still cannot guarantee the accurate solution of
eikonal equation in a numerical model with strongly velocity
contrasts due to the limitations of local operators. Based on FD
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Fig. 1. 3D diagram shows the traveltime distributions at different grid points and
slowness distributions in different grid cells. Red dot represents the traveltime Ti,j,k to
be solved and blue dots represent the traveltimes used for the solution of traveltime
indicated by red dot. Symbol Si,j,k indicates the constant slowness in grid cell.

Fig. 2. 3D diagram of plan wave 8 point operator. Symbols with capital letter T
represent traveltime distributions at different grid points and symbol with capital
letter S indicates slowness distribution in grid cell. Red dotted arrow indicates plane
seismic waves propagating in grid cell. The traveltime indicated by red dot is simulated
by using the traveltimes indicated by blue dots.
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operators, Zhao (2005) proposed fast sweeping (FS) method based
on the Gauss-Seidel iterations to solve the eikonal equation. FS
method is simple to implement for a monotonous and stable so-
lution of first-arrival traveltimes due to the Godunov-type nu-
merical flux. Because local operators based on 2 point local
operator only consider the propagation of plane waves, FS method
with first-order accuracy is suitable for the grid points far away
from source point (Lu and Zhang, 2022) and induces great errors
near source point due to source singularity. To avoid the singularity
of source point, Fomel et al. (2009) used multiplicative factor
decomposition (MFD) method to solve the eikonal equation in a 2D
numerical model and significantly improved the calculation accu-
racy of first-arrival traveltimes at the grid points near source point
due to the accurate characterization of spherical wave fronts.
Combined with the advantages of factored eikonal equation, Noble
et al. (2014) proposed a 3D hybrid FD method with a window
surrounding source point to solve the eikonal equation. The hybrid
FD method by using spherical wave operators inside the window
and plane wave operators outside the window can fulfill an accu-
rate calculation of seismic traveltimes in heterogeneous slowness
model. However, the artificial selection of different local operators
cannot choose themost accurate operators to characterize different
wave types propagating along different directions for each grid
point. To solve the above problem, Qiao et al. (2021) proposed an
adaptive finite-difference (AFD) method to automatically select the
most accurate 2D local operators and fulfill the efficient and robust
calculation of first-arrival traveltimes in 2D media with extremely
complex velocity parameters. Because seismic waves actually
propagate along 3D directions in realistic physical world, the 2D
eikonal equation cannot characterize all the possible seismic wave
types propagating in a 3D model and thus reduces the accuracy of
first-arrival traveltimes simulated by 2D AFD method.

Based on the above analysis, this paper extends the AFDmethod
for 2D complex media to a more general AFD schemes for the 3D
eikonal equation. Combined with the Fermat principle and global
fast sweeping schemes, the novel method makes an adaptive
choice of different 3D local operators characterizing different
seismic wave propagations to calculate a more accurate and robust
first-arrival traveltimes in strongly heterogeneous media, which
will be beneficial to seismic monitoring, tomographic imaging and
earthquake location. The rest of paper is organized as follows. First,
we introduce the candidate 3D local operators representing
different seismic wave propagations for the 3D eikonal equation.
Second, the AFD method is presented to accurately calculate 3D
first-arrival traveltimes. Thirdly, three numerical examples are
solved to show the stable and robust performance of the novel
method. Lastly, we present the discussion and conclusions.

2. Local operators

The analytical eikonal equation is a non-linear partial differen-
tial equation generally expressed as� jVTðXÞj ¼ SðXÞ;X2U;
TðXÞ ¼ 0;X2vU;

(1)

where U3Rn represent an n dimensional domain, X is the space
variable, S(X) is the slowness model (the inverse of velocity model),
T(X) is the first-arrival traveltimes, V is the Hamilton operator.

For 3D numerical simulation, we first discretize the 3D slowness
model in the Cartesian coordinates with a grid interval of dx, dy and
dz along x, y and z direction, respectively. The discretized slowness
model consists of Nx � Ny � Nz grid points in total. After the above
numerical discretization, Fig. 1 shows that first-arrival traveltimes
are located at the vertices of grid cells and a constant slowness
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value is assigned for each grid cell. In this paper, the novel method
uses five different local operators to calculate the above discretized
first-arrival traveltimes. For simplicity, only the grid cell with
constant slowness Si,j,k shown in Fig. 1 is used for the derivations of
local operators to characterize different seismic waves propagating
along different directions for the solution of first-arrival trav-
eltimes. The local operators for the other seven grid cells shown in
Fig. 1 also are simply derived with the similar steps to characterize
different seismic waves propagating along the other seven
directions.
2.1. Plane wave 8 point operator

Vidale (1990) showed that 8 point operator is more accurate
than other operators for the modeling of seismic traveltimes
generated by seismic transmitted plane waves. As shown in Fig. 2,
we use eight grid points for the grid cell filled with a constant
slowness Si,j,k to simulate the traveltime Ti,j,k located at grid point
(xi, yj, zk). Then, the three partial derivatives along 3D spatial



Fig. 3. 3D diagram of plan and spherical wave 4 point operators. Symbols with capital
letter T represent traveltime distributions at different grid points and symbol with
capital letter S indicates slowness distribution in grid cell. Red dotted arrows indicate
plane or spherical seismic waves propagating parallel with grid faces. The traveltime
indicated by red dot is simulated by using the traveltimes indicated by blue dots.
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directions in Eq. (1) are evaluated by the following FD formulas:

vT
vx

¼ Ti;j;k � Tpx
4dx

; (2)

vT
vy

¼ Ti;j;k � Tpy
4dy

; (3)

vT
vz

¼ Ti;j;k � Tpz
4dz

; (4)

where the intermediate variables Tpx, Tpy and Tpz are defined as:

Tpx ¼ Ti�1;j;k � Ti;j�1;k þ Ti�1;j�1;k � Ti;j;k�1

þTi�1;j;k�1 � Ti;j�1;k�1 þ Ti�1;j�1;k�1;
(5)

Tpy ¼ Ti;j�1;k � Ti�1;j;k þ Ti�1;j�1;k� Ti;j;k�1

þTi;j�1;k�1 � Ti�1;j;k�1 þ Ti�1;j�1;k�1;
(6)

Tpz ¼ Ti;j;k�1 � Ti�1;j;k þ Ti�1;j;k�1 � Ti;j�1;k

þTi;j�1;k�1 � Ti�1;j�1;k þ Ti�1;j�1;k�1:
(7)

Then, Eq. (1) can be discretized as:

�
Ti;j;k � Tpx

4dx

�2

þ
�
Ti;j;k � Tpy

4dy

�2

þ
�
Ti;j;k � Tpz

4dz

�2

¼ S2i;j;k :

(8)

The above equation is an quadratic equation with one unknown
variable Ti,j,k and gives the following solution,

Ti;j;k¼
�b±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; (9)

a¼ 1
16

 
1
d2x

þ 1
d2y

þ 1
d2z

!
; (10)

b¼ � 1
8

 
Tpx
d2x

þ Tpy
d2y

þ Tpz
d2z

!
; (11)

c¼ 1
16

 
T2px
d2x

þ T2py
d2y

þ T2pz
d2z

!
� S2i;j;k : (12)

Because the solutions for Eq. (8) need to satisfy the illumination
condition (Podvin and Lecomte, 1991), the discriminant under the
square root is a positive number, which gives,

b2 �4ac � 0: (13)

Meanwhile, only the larger root in Eq. (9) is chosen for the so-
lution of traveltime due to the causality condition (Fomel et al.,
2009). From the above analysis, we can calculate the first-arrival
traveltime Ti,j,k from transmitted plane wave propagating along
the direction indicated by red dotted arrow with the other seven
neighboring grid points as shown in Fig. 2. However, the plane
wave 8 point operator can only be used to accurately calculate the
traveltimes generating from plane wave fronts transmitting in grid
cell.
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2.2. Plane wave 4 point operator

Besides the plane waves transmitting in grid cell, there are still
plane waves propagating along the three faces as the red dotted
arrows shown in Fig. 3. The planewave 4 point operator can be used
to accurately simulate the first-arrival traveltime Ti,j,k generating
from plane waves propagating parallel with the three faces. For
simplicity, we use the bottom face z¼ k to calculate the plane wave
4 point operator. Then, the two partial derivatives with respect to x
and y directions in Eq. (1) are numerically evaluated as

vT
vx

¼ Ti;j;k � Tpx
2dx

; (14)

vT
vy

¼ Ti;j;k � Tpy
2dy

; (15)

where the intermediate variables Tpx and Tpy are defined as:

Tpx ¼ Ti�1;j;k � Ti;j�1;k þ Ti�1;j�1;k; (16)

Tpy ¼ Ti;j�1;k � Ti�1;j;k þ Ti�1;j�1;k: (17)

Then, Eq. (1) can be discretized as:

�
Ti;j;k � Tpx

2dx

�2

þ
�
Ti;j;k � Tpy

2dy

�2

¼ S2m; (18)

Sm ¼min
�
Si;j;k; Si;j;kþ1

�
; (19)

where min function represents evaluating the minimum one from
different values. The above equation is also an quadratic equation
for variable Ti,j,k and gives the following solution,

Ti;j;k ¼
�b±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; (20)



Fig. 4. 3D diagram of spherical wave 2 point operator. Symbols with capital letter T
represent traveltime distributions at different grid points and symbol with capital
letter S indicates slowness distribution in grid cell. Red dotted arrow indicates
spherical seismic waves propagating in grid cell. The traveltime indicated by red dot is
simulated by using the traveltimes indicated by blue dots.
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a¼ 1
4

 
1
d2x

þ 1
d2y

!
; (21)

b¼ � 1
2

 
Tpx
d2x

þ Tpy
d2y

!
; (22)

c¼1
4

 
T2px
d2x

þ T2py
d2y

!
� S2m : (23)

The illumination condition (Podvin and Lecomte, 1991) also
results in a positive number of the discriminant under the square
root in Eq. (20) and the causality condition (Fomel et al., 2009) only
choose the larger root in Eq. (20) for the solution of traveltime
generated by the plane wave propagating parallel with the bottom
face. The traveltimes generated by the plane waves propagating
along the other two faces also can be simply derived with the
similar steps. Then, the minimum traveltime is selected from
traveltimes calculated from the three faces as the solution of trav-
eltime for the grid point Ti,j,k as the red dot shown in Fig. 3, which
indicates that the plane wave 4 point operator can only be used to
accurately calculate the traveltimes generating from plane waves
parallel with the three faces surrounding the grid point to be
solved.

2.3. Spherical wave 2 point operator

Because the above two plane wave operators cannot handle the
singularity of source point, plane wave operators will calculate the
first-arrival traveltimes generated from spherical waves with low
precision, which induce that traveltime error increases as the dis-
tance between calculated grid point and source point decreases. To
reduce the big errors induced by source singularity, Fomel et al.
(2009) used multiplicative factor decomposition to represent
traveltimes and slowness model as,�
TðXÞ ¼ T0ðXÞtðXÞ;
SðXÞ ¼ S0ðXÞaðXÞ; (24)

where t(X) and a(X) represent the multiplicative factors of trav-
eltimes and slowness, respectively. T0(X) and S0(X) also satisfy the
eikonal equation as,� jVT0ðXÞj ¼ S0ðXÞ;X2U;
T0ðXÞ ¼ 0;X2vU :

(25)

For a constant gradient or constant slowness model S0(X), an
analytical solution for T0(X) will be simply evaluated from Eq. (25).
Then, combined with Eq. (24), Eq. (1) is transformed into an
equation about the factor t(X) as follows,

T20 jVtj2 þ2T0tVT0 ,Vtþ
�
t2 �a2

�
S20 ¼ 0;X2U;

(26)

with the boundary conditions:

tðXÞ ¼
8<
:

TðXÞ=T0ðXÞ; T0ðXÞs0

aðXÞT0ðXÞ ¼ 0
;

X2vU :

(27)

For stability and convergence (Fomel et al., 2009), a two point FD
operator is used to calculate the traveltimes from transmitted
spherical waves as the red dotted arrow shown in Fig. 4. Then,
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based on spherical wave 2 point operator, the three partial de-
rivatives of t(X) with respect to x, y and z directions in Eq. (26) are
evaluated by the following FD formulas:

vt

vx
¼ ti;j;k � tsx

dx
; (28)

vt

vy
¼ ti;j;k � tsy

dy
; (29)

vt

vz
¼ ti;j;k � tsz

dz
; (30)

where the intermediate variables tsx, tsy and tsz are derived by
replacing variable T with t in Fig. 4,

tsx ¼ ti�1;j;k; (31)

tsy ¼ ti;j�1;k; (32)

tsz¼ ti;j;k�1: (33)

Then, Eq. (26) becomes an quadratic equation for the one unknown
variable ti,j,k and gives the following solution,

ti;j;k¼
�b±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; (34)

a ¼ T20

 
1

d2x
þ 1

d2y
þ 1

d2z

!
þ

2T0

�
T0;x
dx

þ T0;y
dx

þ T0;z
dx

�
þ S20;

(35)

b ¼ �2T20

 
tsx

d2x
þ tsy

d2y
þ tsz

d2z

!
�

2T0

�
tsxT0;x
dx

þ tsyT0;y
dy

þ tszT0;z
dz

�
;

(36)



Fig. 5. 3D diagram of refracted wave 2 point operator. Symbols with capital letter T
represent traveltime distributions at different grid points and symbol with capital
letter S indicates slowness distribution in grid cell. Red dotted arrows indicate
refracted or direct waves propagating along grid edges. The traveltime indicated by red
dot is simulated by using the traveltimes indicated by blue dots.

B.-P. Qiao, Q.-Q. Li, W.-G. He et al. Petroleum Science 21 (2024) 195e205
c¼ T20

 
t2sx
d2x

þ t2sy
d2y

þ t2sz
d2z

!
� S2i;j;k; (37)

with the illumination condition,

b2 �4ac � 0: (38)

where T0,x, T0,y and T0,z represent the derivatives of T0 along x, y and
z directions, respectively. To solve source singularity, S0(X) is set to
be a slowness model with homogeneous parameter, which is equal
to the slowness value at source point. Then, T0(X) is analytically
solved for the entire constant slowness model. With the solutions
of S0(X) and T0(X), Eqs. (34) and (24) can be used to numerically
simulate the factor ti,j,k and traveltime Ti,j,k for each grid point in
sequence. Due to the causality condition (Fomel et al., 2009), only
the calculated traveltime Ti,j,k larger than the neighboring three
traveltimes as the blue dots shown in Fig. 4 is selected for trav-
eltime and factor updating.

From above analysis, we conclude that the first-arrival trav-
eltimes generated by transmitted spherical waves propagating
along the direction indicated by red dotted arrow in grid cell as
shown in Fig. 4 can be calculated from the three neighboring grid
points. Because source singularity is captured by using easily
computed multiplicative factors, the spherical wave 2 point oper-
ator can more accurately calculate the first-arrival traveltime from
transmitted spherical waves near source point.

2.4. Spherical wave 4 point operator

Besides the spherical waves transmitting in grid cell, there are
still spherical waves propagating parallel with the three faces as the
red dotted arrows shown in Fig. 3. Spherical wave 4 point operator
can be used to accurately calculate the first-arrival traveltime Ti,j,k
from spherical waves propagating parallel with the three faces. We
also use the bottom face z ¼ k as shown in Fig. 3 to derive spherical
wave 4 point operator. For FD scheme, the two numerical partial
derivatives of t(X) with respect to x and y directions and two in-
termediate variables tx and ty are easily evaluated just by replacing
variable T with t from Eqs. (14)e(17). Then, Eqs. (26) and (27) are
discretized and give the following solution,

ti;j;k ¼
�b±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; (39)

a¼ T20
4

 
1
d2x

þ 1
d2y

!

þT0

�
T0;x
dx

þ T0;y
dy

�
þ S20;

(40)

b¼ � T20
2

 
tsx
d2x

þ tsy
d2y

!

�T0

�
tsxT0;x
dx

þ tsyT0;y
dy

�
;

(41)

c¼ T20
4

 
t2sx
d2x

þ t2sy
d2y

!
� S2m : (42)

Sm ¼min
�
Si;j;k; Si;j;kþ1

�
; (43)

where T0,x and T0,y represent the derivatives of T0 with respect to x
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and y directions, respectively. T0(X) also has an analytical solution
for a model S0(X) with constant slowness value at source point. As
introduced in section 2.3, only the larger calculated traveltime Ti,j,k
is selected for the solution of traveltime generated by the spherical
wave propagating parallel with the bottom face. The spherical wave
4 point operator used for the other two faces also can be simply
derived with the similar steps. Then, the minimum traveltime is
selected from traveltimes evaluated from the three faces as the
solution of traveltime for the grid point as the red dot shown in
Fig. 3, which indicates that spherical wave 4 point operator can be
used to accurately calculate the traveltimes generating from
spherical waves propagating parallel with faces for the grid points
near source point.
2.5. Refracted wave 2 point operator

Besides plane waves and spherical waves, there are still refrac-
ted waves or direct waves propagating along the edges as the red
dotted arrows shown in Fig. 5 for each grid cell. To accurately
simulate the first-arrival traveltimes generating from refracted
waves or directed waves, we use refracted wave 2 point operator
based on the grid cell shown in Fig. 5:

Ti;j;k ¼min
�
Trx; Try; Trz

	
; (44)

Trx ¼ Ti�1;j;kþ
dx min

�
Si;j;k; Si;jþ1;k; Si;j;kþ1; Si;jþ1;kþ1

�
;

(45)

Try ¼ Ti;j�1;kþ
dy min

�
Si;j;k; Siþ1;j;k; Si;j;kþ1; Siþ1;j;kþ1

�
;

(46)

Trz ¼ Ti;j;k�1þ
dz min

�
Si;j;k; Siþ1;j;k; Si;jþ1;k; Siþ1;jþ1;k

�
:

(47)

Then, the first-arrival traveltime Ti,j,k can be simulated with the
three neighboring traveltimes Ti-1,j,k, Ti,j-1,k and Ti,j,k-1. Therefore, the
local refracted wave 2 point operator is able to accurately simulate
the first-arrival traveltimes generated by refracted waves or direct
waves propagating along grid edges.
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3. AFD schemes

Based on the local operators introduced in section 2, we can
calculate the first-arrival traveltime Ti,j,k generated from different
seismic waves propagating in the grid cell with constant slowness
Si,j,k shown in Fig. 1. There also are the other seven grid cells to
calculate seismic traveltime Ti,j,k generated from seismic waves
propagating from the other seven directions. To take into account
all the possible propagation directions of different seismic waves,
AFD method is proposed to calculate the most accurate first-arrival
traveltimes in strongly contrasted slowness parameters with un-
conditional convergence based on the Fermat principle. The novel
method in detail is as follows.

1. Initialization: for source point locating at grid vertex, traveltime
T and factor t for the grid vertex assigned to source point are set
to be 0 and 1, respectively. For source point not locating at grid
vertex, exact traveltimes and factors for the grid vertices just
surrounding source point are analytically extrapolated by using
constant slowness parameters. The above exact initialized
values are not updated in next steps. For all the other grid
vertices, traveltimes and factors are set to be a big positive
number Vmax, which will be updated in the following iteration.

2. Globally fast sweep the entire domain (Nx � Ny � Nz grid points)
along eight alternating directions repeatedly with Gauss-Seidel
iterations.
(1) i ¼ 2: Nx; j ¼ 2: Ny; k ¼ 2: Nz,
(2) i ¼ 2: Nx; j ¼ 2: Ny; k ¼ Nz�1: 1,
(3) i ¼ Nx�1: 1; j ¼ 2: Ny; k ¼ 2: Nz,
(4) i ¼ Nx�1: 1; j ¼ 2: Ny; k ¼ Nz�1: 1,
(5) i ¼ 2: Nx; j ¼ Ny�1: 1; k ¼ 2: Nz,
(6) i ¼ 2: Nx; j ¼ Ny�1: 1; k ¼ Nz�1: 1,
(7) i ¼ Nx�1: 1; j ¼ Ny�1: 1; k ¼ 2: Nz,
(8) i ¼ Nx�1: 1; j ¼ Ny�1: 1; k ¼ Nz�1: 1.

3. During each sweeping direction, different local operators cor-
responding to the specified sweeping direction are used for the
modeling of first-arrival traveltime T and factor t at each grid
point based on the adaptive updating schemes as follows:
(1) Calculate traveltime Tp8 by plane wave 8 point operator. If

real root exists, Tp8 is identical to the real root; otherwise,
Tp8 ¼ Vmax.

(2) Calculate traveltime Tp4 by plane wave 4 point operator. If
real root exists, Tp4 is identical to the real root; otherwise,
Tp4 ¼ Vmax.

(3) Calculate traveltime Ts2 by spherical wave 2 point operator. If
real root exists, Ts2 is identical to the real root; otherwise,
Ts2 ¼ Vmax.

(4) Calculate traveltime Ts4 by spherical wave 4 point operator. If
real root exists, Ts4 is identical to the real root; otherwise,
Ts4 ¼ Vmax.

(5) Calculate traveltime Tr2 by refracted wave 2 point operator.
(6) Select the minimum value from the above five calculate

traveltimes for candidate traveltime Tcan ¼ min(Tp8, Tp4, Ts2,
Ts4, Tr2).

(7) Based on the Fermat principle, only when the candidate
traveltime Tcan is smaller than the old traveltime Told, the
candidate traveltime is selected for the updated traveltime
Tupd and updating of factor.

4. Repeat steps 2 and 3 for each iteration until first-arrival trav-
eltimes convergent to stable solutions, the convergence crite-
rion for each iteration is as,
200



Tupd � Told




∞
< d; (48)

where kk∞ is an infinite norm operator, d is a very small positive
number which is assigned to be 1E�6 in the following numerical
examples.

From the above algorithm flow, we know that AFD method
simultaneously uses different local operators to calculate trav-
eltimes from different seismic wave types and global fast sweep-
ings cover all the possible propagating directions of seismic waves
in a 3D inhomogeneous media. Then, the minimum traveltimes are
adaptively selected as the most accurate solution of the 3D eikonal
equation based on the Fermat principle. The causality condition and
Gauss-Seidel iteration guarantee the iterative solution converges to
the stable solution of discretized 3D eikonal equation. Thus, AFD
method can fulfill the accurate and robust calculation of first-arrival
traveltimes for any strongly heterogeneous media.

4. Numerical examples

In this section, three numerical results are illustrated to show
the good performance of our AFD method. T0 is set to be a distance
function for local spherical wave operators in the following nu-
merical examples.

4.1. Example 1

We use a 3D homogeneous slowness model with a constant
velocity of 2000 m/s to calculate the seismic first-arrival trav-
eltimes with the 3D eikonal equation. There are 100 grid cells with
a grid spacing of 10 m for each direction, which generate a 3D cubic
of 1000 m � 1000 m � 1000 m. Source point is deployed at the grid
point (500 m, 500 m, 500 m). Based on boundary condition, we can
simply evaluate the analytical first-arrival traveltimes and further
calculate absolute traveltime errors by using different numerical
methods. Eq. (49) is used for the absolute traveltime error calcu-
lation in the following examples.

DT ¼ jTa � Tnj; (49)

where DT represents the absolute errors, Ta and Tn represent the
analytical and numerical solutions, respectively.

Firstly, the first-arrival traveltimes calculated by FS method are
used to generate the absolute traveltime errors with Eq. (49). As the
blue areas shown in Fig. 6a and 6b, FS method generates relatively
small traveltime errors only near the three axes passing through
source point due to the only using of plane wave 2 point operator
(Zhao, 2005). Because plane wave operator cannot accurately
handle the problems induced by source singularity, the absolute
traveltime error not along axes rapidly increases as the distance
between source point and grid point increases, which induces a
maximum traveltime error of 1.14E�2 s shown in Table 1. After the
capture of source singularity by using spherical wave 2 point
operator (Fomel et al., 2009), MFDmethod is adopted to handle the
spherical wave propagation and generate the absolute traveltime
errors shown in Fig. 6c and 6d. Compared with Fig. 6a and 6b, it is
clearly observed that the traveltime errors have been significantly
reduced to a quantity of 10�4 s. The blue lines in Fig. 6c and three
blue faces in Fig. 6d prove that the traveltimes located on the three
faces passing through source point are almost identical to the
analytical solutions due to the using of spherical wave operators.
Meanwhile, the traveltime error also gradually increases as the



Fig. 6. Absolute traveltime errors in 3D homogeneous media by FS method on faces passing through the grid points (0 m, 0 m, 0 m) (a) and (500 m, 500 m, 500 m) (b), MFD method
on faces passing through the grid points (0 m, 0 m, 0 m) (c) and (500 m, 500 m, 500 m) (d), and AFD method on faces passing through the grid points (0 m, 0 m, 0 m) (e) and (500 m,
500 m, 500 m) (f).

Table 1
The maximum absolute traveltime errors and computational costs in example 1.

Methods FS MFD AFD

Maximum errors, s 1.140E�2 1.160E�4 2.235E�5
CPU time, s 0.618 36.284 2.390
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distance between calculated grid point and source point increases,
which induces relatively big traveltime errors with a maximum
value of 1.16E�4 s shown in Table 1. Finally, Fig. 6e and 6f indicates
that AFD method further reduces traveltime errors with a
maximum value of 2.235E�5 s shown in Table 1, because the
adaptively updating schemes automatically select the most
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accurate local operators for different seismic wave types. Table 1
also shows that FS method with the lowest accuracy of traveltime
only takes the least computational cost for the numerical solution
due to the only using of plane wave operator. Although the number
of local operators in MFD method is less than the number of local
operators in AFD method, MFD still takes the most computational
cost of 36.284 s. The reason is that AFD method uses five different
operators to adaptively select the most accurate one in one itera-
tion, the number of iterations for AFD method is significantly fewer
than the number of iterations for MFD method, which results in
that AFD method converges to the stable solution much faster than
MFD method. Thus, the above results show that our novel method
can rapidly calculate the most accurate and stable first-arrival
traveltimes in 3D homogeneous media.
4.2. Example 2

For most media below the Earth surface, slowness decreases as
the depth below the Earth surface increases. Therefore, this
example builds a more realistic 3D slowness model with a constant
slowness distribution of 2 s/km at the surface z ¼ 0 and a constant
gradient of slowness squared by a gradient of �2.9 s/km along the
depth z > 0. There are 100 grid cells with a grid spacing of 5 m for
each direction, which generate a 3D cubic of
500 m � 500 m � 500 m. Source point is deployed at the origin
coordinate (0 m, 0 m, 0 m). Based on boundary condition and the
generated slowness model, the analytical first-arrival traveltimes
are simply evaluated as shown in Fig. 7. We clearly observe that
analytical traveltimes are symmetrically distributed along both
sides of z axis, and the traveltimes along z direction is smaller than
the traveltimes along x and y directions for grid points at the
identical distances away from source point due to the decrease of
slowness along z direction.

We use FS method to calculate first-arrival traveltimes and ab-
solute traveltime errors based on Eq. (49). Like the analytical so-
lutions, Fig. 8a and 8b shows that the traveltime errors also are
symmetrically distributed along both sides of z axis. Because plane
wave operator only accurately characterizes the propagations of
plane wave fronts, the relatively small traveltime errors are only
distributed near the three axes passing through source point as the
blue area showing in Fig. 8a and traveltime error also gradually
Fig. 7. Analytical traveltimes simulated from a 3D model with constant gradient of slowness
500 m) (b), respectively.
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increases as the distance from source increases. Table 2 shows that
although the maximum traveltime error generated by FS method is
only 2.26E�2 s, the number of traveltime errors greater than 0.01 s
is up to 85.4%, which induce the wide warm area shown in Fig. 8a
and 8b. After the solution of source singularity by MFDmethod, the
warm area in Fig. 8c are reduced due to the accurately characterized
spherical wave front. Compared with Fig. 8b and d also shows wide
warm area with a bigger maximum traveltime error of 2.483E�1 s
at the farthest grid point (500m, 500m, 500m), which are induced
by the only using of spherical wave 2 point operator at far offset
(Fomel et al., 2009). As shown in Table 2, the number of traveltime
errors greater than 0.01 s is almost the same as the result simulated
by FS method and the computational cost of MFD method is only
slightly greater than the computational cost of FS method. From the
above results, we conclude that MFD method is a more accurate
method than FS method for grid points near source point by using
spherical wave operators. However, because seismic spherical
waves at near offset gradually convert to plane waves at far offset,
the accuracy of MFDmethod decreases faster than FSmethod as the
distance from source increases. The above problems are solved very
well by AFD method due to the adaptive selection of different local
operators for different wave types. Fig. 8e shows that traveltime
errors on the three faces passing through source point are relatively
smaller than the results shown in Fig. 8c and 8f also shows a much
colder area with a maximum traveltime error almost identical to
the maximum value shown in Fig. 8b. Meanwhile, Table 2 shows
that the number of traveltime errors greater than 0.01 s has been
significantly reduced to 46.6% with a time consumption of only
16.8 s, which is the least computational cost than the other two
methods. Therefore, AFD method can accurately and fast calculate
seismic first-arrival traveltimes simultaneously at near and far
wavefields for a realistic 3D inhomogeneous model.

For seismic wave propagating in arbitrarily heterogeneous 3D
media, we know that seismic wave types will gradually are con-
verted from spherical waves at near source point to plane waves far
away from source point. Because seismic spherical waves, plane
waves and refracted waves propagating along different 3D di-
rections all exist at near source point, our AFD method can adap-
tively select appropriate local operators to calculate the most
accurate first-arrival traveltimes than FS and MFD method near
source point. As distance from source point increases, plane waves
squared on faces passing through the grid points (0 m, 0 m, 0 m) (a) and (500 m, 500 m,



Fig. 8. Absolute traveltime errors in a 3D model with constant gradient of slowness squared by FS method on faces passing through the grid points (0 m, 0 m, 0 m) (a) and (500 m,
500 m, 500 m) (b), MFD method on faces passing through the grid points (0 m, 0 m, 0 m) (c) and (500 m, 500 m, 500 m) (d) and AFD method on faces passing through the grid
points (0 m, 0 m, 0 m) (e) and (500 m, 500 m, 500 m) (f).

Table 2
The maximum absolute traveltime errors, number of traveltime errors greater than
0.01 s and computational costs in example 2.

Methods FS MFD AFD

Maximum errors, s 2.260E�2 2.483E�1 2.560E�2
Errors >0.01 s, % 85.4 85.5 46.6
CPU time, s 32.473 37.382 16.800
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and refracted waves gradually become dominant wave types and
the spherical wave operators in AFD method cannot accurately
describe the propagations of other wave types, which therefore
induces bigger traveltime errors than FS method for grid point at a
long distance from source point as shown in Fig. 8f. Thus, only using
local plane wave and refracted wave operators are enough to
ensure the accuracy of first-arrival traveltime calculation at far
distance in most situations (Noble et al., 2014). To further improve
the accuracy and efficiency, a cubic windowwith sides of about 100
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grid points surrounding source point is adopted for the imple-
mentation of AFD method. For grid points locating in the cubic
window, all the local operators in AFDmethod are used to calculate
first-arrival traveltimes. For grid points locating outside the cubic
window, local operators except for spherical wave operators are
used for a more accurate forward modeling. In the following het-
erogeneous media with sharp slowness variations, the above
introduced cubic window also is adopted for AFD method.

4.3. Example 3

In this example, we use the 3D Overthrust model with sharp
velocity contrasts to test AFDmethod for the accurate calculation of
first-arrival traveltimes. The size of the 3D model is
10,000m� 10,000m� 4675mwith a grid interval of 25m for each
direction. A source locating at the origin coordinate (0 m, 0 m, 0 m)
is used to generate the wave fronts as the white lines shown in
Fig. 9. It is clearly observed that spherical wave fronts propagating
near source point are gradually transformed to plane wave fronts
propagating far away from source point in the strongly heteroge-
neous 3D media. Because the velocity variations along top and
bottom faces are smaller than vertical faces, the isochrones on the
two horizontal slices are smoother that the isochrones on the other
four vertical slices, which indicate an accurate modeling of first-
arrival traveltimes. The result is simulated with serial C code
running on an intel i7 3.1 GHz and takes a computational cost of
1213 s for the unsmooth 3D Overthrust model, which illustrates
that the novel AFD method is efficient for 3D complex realistic
model.

5. Discussion

The 3D Overthrust model is a numerical model with sharply
varying velocities, which has no analytical solutions of first-arrival
traveltime and thus, the traveltime error analysis is not adopted in
example 3. Based on the identical hardware platform, FS and MFD
methods are also tested to calculate first-arrival traveltimes for the
3D Overthrust model with computational costs of 2174 s and
6934 s, respectively. Because AFD method needs the least iteration
to converge to the stable solution, both FS and MFD methods take
longer time consumptions than AFD method. Meanwhile, plane
Fig. 9. Overthrust model with a source point located at the origin coordinate (0 m, 0 m, 0 m
faces passing through the grid points (0 m, 0 m, 0 m) (a) and (10000 m, 10000 m, 4675 m
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wave 8 point operator in AFD method is a more accurate operator
than plane wave 2 point operator in FS method, thus, AFD method
can characterize plane wave propagation more accurately than FS
method. For strongly heterogeneous media, because only spherical
wave 2 point operator can not accurately describe the character-
istics of all possible seismic wave types, the accuracy of MFD
method is lower than that of AFD method with an adaptive selec-
tion of different local operators to accurately characterize different
seismic wave propagations. Whether from the point of view of
computational cost or from the point view of accuracy, AFDmethod
is a better choice for the traveltime modeling with a more realistic
3D heterogeneous media and will be well applied in scopes such as
seismicmonitoring, multi-source location and seismic tomographic
imaging.
6. Conclusions

In this paper, an accurate adaptive finite-difference (AFD)
method is proposed to solve the 3D eikonal equation for seismic
first-arrival traveltimes in strongly inhomogeneous media. To
improve the numerical accuracy of seismic first-arrival traveltimes
in computational domains near source point for fast sweeping (FS)
method and far away from source point for multiplicative factor
decomposition (MFD) method, our AFD method simultaneously
calculates five different local operators to characterize all the
possible seismic wave types. Then, the adaptive updating schemes
based on the Fermat principle automatically select the most accu-
rate local operator to update both the traveltimes and factors,
global fast sweepings along eight directions in 3D domain are
adopted to sweep all the possible propagating directions in strongly
varying slowness model and Gauss-Seidel iterations guarantee the
convergences of numerical solutions. Thus, the novel method can
achieve a more accurate modeling of seismic traveltimes than FS
and MFD methods for computational domains both near and far
away from source point. The three numerical examples further
show AFD method is an accurate and stable numerical method,
which is better for the calculation of first-arrival traveltimes in 3D
media with sharp slowness contrasts.
) generates first-arrival traveltimes with contour plots (white lines) by AFD method on
) (b), respectively.
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