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Abstract: In this paper, the iterative coupling approach is proposed for applications to solving multiphase 
flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy 
than existing approaches. The iterative method decouples the whole equation systems into pressure and 
saturation/concentration equations, and then solves them in sequence, implicitly and semi-implicitly. 
At each time step, a series of iterations are computed, which involve solving linearized equations 
using specifi c tolerances that are iteration dependent. Following convergence of subproblems, material 
balance is checked. Convergence of time steps is based on material balance errors. Key components of 
the iterative method include phase scaling for deriving a pressure equation and use of several advanced 
numerical techniques. The iterative model is implemented for parallel computing platforms and shows 
high parallel effi ciency and scalability. 
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Iterative coupling reservoir simulation on
high performance computers

1 Introduction
Reservoir simulation is one of the most useful tools 

in reservoir engineering. It accomplishes the following 
objectives: history matching and prediction of pressure and 
saturation in reservoirs; understanding fluid flow and oil 
recovery processes; and supporting optimal production plans. 
Reservoir simulation is based on the numerical approximation 
of solutions to the equation systems described by mass 
conservation and Darcy’s Law. In these equation systems one 
encounters elliptic, parabolic, and near-hyperbolic equations 
with complicated nonlinear behavior arising from fluid and 
reservoir properties. Computational complexity arises from 
the high spatial heterogeneity of multi-scale porous media. 
This heterogeneity, together with measurement limitations, 
leads to uncertainties in simulation. As a result, numerically 
approximating subsurface phenomena is an intricate problem, 
which is critical to the industry for accurate predictions of 
costly projects. Accordingly, we propose the iterative method 
to address the time-stepping issues for the purpose of both 
minimizing computational cost (CPU time) and providing 
accurate solutions.

The fully implicit method (FIM) and the implicit pressure 
explicit saturation (IMPES) method are widely used as time-
stepping approaches in reservoir simulation (Chen et al 2006; 
Coats, 1982; Fanchi, 2001; Kendall et al, 1983; Peaceman, 
1977; Watts, 1986). The FIM solves reference pressure and 
saturation/concentration simultaneously within a given time 
step. The implicitness makes the FIM unconditionally stable 

but computationally costly. The IMPES method is based 
on operator time-splitting that involves solving a reference 
pressure equation obtained by operating the mass balance 
and Darcy fl ow equations. Saturation/concentration equations 
are solved using total velocity and fractional mobility. The 
IMPES method, while computationally inexpensive, exhibits 
unacceptable oscillatory solutions unless very small time 
steps are employed.

Several other approaches, such as the sequential method 
and the adaptive implicit method (AIM), are focusing on 
combining the advantages of both the FIM and the IMPES to 
achieve better stability, accuracy, and efficiency (Fagin and 
Stewart, 1966; Fung et al, 1998; Spillette et al, 1973; Watts 
and Shaw, 2005). The sequential method solves pressure 
and saturation both implicitly, and in sequence. In general 
cases it improves the solution accuracy over the IMPES 
method. However, it requires additional computer memory 
and has problems in handling complicated capillary pressure 
curves. The AIM uses both the FIM and the IMPES in one 
simulation by applying the FIM to complicated subdomains 
and applying the IMPES to less heterogeneous subdomains. 
The assignment of different methods is based on error 
estimation at the beginning of each time step. The AIM 
shows advantages over other methods in simulation on serial 
computers, but it encounters obvious difficulties in parallel 
computing environments due to the load imbalance problem. 

Paral le l  implementat ion is  one of  the s tandard 
functionalities of the next generation reservoir simulators 
(DeBaun et al, 2005; Fjerstad et al, 2005; Øian et al, 2005; 
Shiralkar et al, 2005). With parallel computation, one large 
problem is divided into several small sub-problems across 
multiple processors, and each processor solves its local *Corresponding author. email: Bo.Lu@bp.com, utlubo@gmail.com
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problem. Several domain decomposition methodologies, 
parallel programming libraries and linear solvers are applied 
by different reservoir simulators.  

In this paper we select a new approach, iterative coupling, 
to solve the equation systems in reservoir simulation. It 
covers most of the problems mentioned above (Lu et al, 2007; 
Lu, 2008). In particular, effort will be expended on pursuing 
high parallel scalability and effi ciency of the iterative method, 
under high performance computing (HPC) environments. 

2 Model formulation
Iterative coupling is an operator-splitting technique that 

decouples the multiphase fl ow equation system into pressure 
and saturation/concentration equations, which are solved 
separately. One typical time step of the iterative model is 
shown in Fig. 1. Each time step starts with the extrapolation to 
calculate the initial values, and then a forcing function is used 
to tighten linear solver tolerance (Dawson et al, 1997; Klie, 
1996; Lacroix et al, 2003). Phase saturations and material 
balances are checked to determine whether convergence is 
satisfi ed. If not, an additional iteration is conducted, in which 
nonlinear coeffi cients are updated and iteration tolerances are 
tightened. Sequential iterations are repeated until the specifi ed 
target convergence condition is achieved. 

oil fluid system, the gas component may exist in either the 
oil phase or the gas phase, but not in the water phase; the 
oil component exists only in oil phase; and no mass transfer 
occurs between the water phase and the other two phases. 

2.2 Pressure equation
The governing equations for a black oil fluid system 

consist of the mass conservation equation for each component 
and the Darcy fl ow equation for each phase. 

For three components (water, oil and gas), we have:

where subscripts W, O, and G denote water, oil,  and gas 
components; subscripts w, o, and g denote water, oil,  and 
gas phases; N is component concentration;  is density;  is 
porosity; u is volumetric velocity; Rso is solution gas-oil ratio; 
and q is the mass rate of injection/production in wellbore, 
which is given by 

 

          

where QS is the volumetric flow rate of each component 
under standard conditions; B is formation volume factor. 

Darcy’s law for multiphase fl ow is applied in the form of 
velocity:

where K is reservoir permeability; k ra is the relative 
permeability of phase α ; μ is viscosity; Pα                  is the pressure of 
phase α; and D is the depth below the reference level. The 
mobility of phase α is defi ned as . 

Substituting Eq. (3) into Eq. (1), and then summing 
all three mass equations give the pressure equation of 
the iterative black oil model. However, the differences of 
viscosity and density among the three phases may lead to 
phase imbalance. Compared with the oil and water phases, 
the gas phase is neglectable due to its small density and 
low viscosity, which reduces the accuracy of the solutions. 

Pet.Sci.(2009)6:43-50

2.1 Assumption
The following assumptions should be made before the 

development of the iterative model: an isothermal reservoir 
with instant thermodynamics equilibrium in all directions, 
slightly compressible formation and Darcy flow, a diagonal 
permeability matrix, no precipitation and absorption, and the 
well is treated as either a source or a sink point. In a black 

(3)

Fig. 1 Typical time step loop of the iterative model
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To avoid the phase imbalance, phase scaling is used in 
the iterative model. The mass equations for water, oil and 

gas phases are normalized by factors,  , 

respectively, yielding

                

for water,

for oil, and

for gas, where μ*, s are reference viscosity and reference 
density under standard conditions.

Capillary pressure and saturation constraint equations are 
applied to Eqs. (4)-(6); the three equations are then summed 
together to yield the pressure equation of the iterative black 
oil model, as follows:

where coeffi cients C1w , C1o, and C1g include derivatives of  ,
Rso, and B with respect to pressure Po as follows:  

All the other coeffi cients in Eq. (7) are listed below. 
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(7)

  (8)

The oil pressure is solved implicitly with Eq. (7), in which 
the well term is treated implicitly. 

2.3 Saturation/concentration equation
Once the oil pressure is obtained, mass conservation 

equations are used to calculate oil and water concentrations, 
as follows:

 (9)

In the concentration equation, all parameters related to 
pressure are updated with the new pressure, and all other 
parameters are upwinded from the latest iteration. Saturations 
are then calculated using their defined relationship to the 
concentrations (Wheeler, 1995).

3 Implementation on HPC
The iterative model is designed to be parallel scalable on 

HPC. A Message Passing Interface (MPI) library is used to 
realize the parallel communication. A “ghost cell” bridges the 
neighboring processors for communication (Lu, 2000; Lu, 
2008), as shown in Fig. 2. On processor 1, the layer close to 
processor 2 is designated as the ghost layer, whose values 

(4)

(5)

(6)
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Fig. 9 CPU time distributions on the Lonestar cluster
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Fig. 8 Parallel scalability on Lonestar with AMV problem
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Fig. 7 Gas/oil ratios in Producer No.20
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4.3 Example 3: AMV problem on Lonestar
This example is modified from a real reservoir, and 

all reservoir properties are transformed from a geological 
model (Lu, 2008). The reservoir has dimensions of 
111,952.94 ft long, 130,806 ft wide, and 2,400 ft thick. 
The grid mesh is 584×550×126=40,471,200. This is 
a heavy oil reservoir, in which the oil has API as low 
as 8.5 and very high viscosity. High heterogeneity is 
observed with wide range of permeability from 10 mD to 
10 D. More than 100 wells have been drilled, with total 
production rate about 150,000 BD. In this simulation, 16 
wells, consisting of one injector and 15 producers, are 
used to represent all the wells by matching the production 

Model Oil balance Water 
balance Gas balance CPU time 

sec

Iterative 1.0003205 0.9992816 1.0006002 6114

FIM 1.0000012 0.9999990 1.0000047 8017

Table 2 Timing comparison for Example 2 rate. All wells are bottom hole pressure specified. Total 
simulation time is 2,000 days. 

This simulation is conducted on the Lonestar cluster from 
TACC (Texas Advanced Computing Center, Lonestar User’
s Guide, 2007. www.tacc.utexas.edu/services/userguides/
lonestar), with the number of processors ranging from 30 to 
500, and the speedup is illustrated in Fig. 8. The red dashed 
line is the ideal parallel speedup. For this problem with more 
than 40 million elements, with 50 processors, speedup is 
reflected by a factor of 47; with 500 processors, speedup 
is reflected by a factor of 349, which is a 70% parallel 
effi ciency. 

The distribution of the total  CPU time in these 
simulations is displayed in Fig. 9. As expected, the linear 
solver occupies most of the CPU time in all simulations, 
up to 92% with 50 processors. Parallel communication, 
initialization, and others occupy the rest of the CPU 
time. As the number of processors increases, parallel 
communication takes more and more CPU time, from 2% 
with 30 processors to 15% with 500 processors. 
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Fig. 10 CPU time distributions on the Blue Gene cluster
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Fig. 9 also indicates several hints to improve the 
parallel simulation performance, such as using better 
networking to cut communication time and adopting better 
solver to shorten linear solving time.

4.4 Example 4: SPE 10 on Blue Gene
In this case, the SPE 10 problem is solved with the 

iterative black oil model on IBM’s Blue Gene cluster. The 
reservoir has a mesh of 220×60×85=1,122,000. Again, 
the PVT properties are modified from the SPE 9 reservoir. 
Various numbers of processors, up to 2,048, are used in this 
simulation. As shown in Fig. 10, better parallel efficiency 
has been achieved with fewer processors. However, even 
with 2,048 processors, speedup is achieved by a factor of 
1,541, which has a parallel efficiency of greater than 75%. 
The CPU time distribution is shown in Fig. 11. As expected, 
the parallel communication time increases signifi cantly with 
increasing number of processors, up to 28% with more than 
1,500 processors, which is the main factor that slows down 

5 Conclusions
The iterative model is developed with the objective 

of combining the advantages of the FIM and the IMPES 
method. The iterative model is faster than the FIM because it 
decouples the equation system into pressure and concentration 
equations, and solves them separately. It is more accurate than 
the IMPES method due to its increasing implicitness. The 
advantages of the iterative method are shown with several 
numerical examples, especially its high efficiency on HPC. 
This study can be summarized as follows:

1) According to examples, the iterative method is more 
than 30% faster than FIM with acceptable material balance 
errors. Even better results have been obtained with particular 
problems. 

Fig. 11 Parallel scalability on Blue Gene with fi ne grid SPE 10
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the HPC simulation.

2) The iterative method is more stable and more accurate 
than IMPES method, and it allows larger time steps, with 
very small or no oscillations. 

3) Several numerical techniques, such as phase scaling, 
extrapolation, and a forcing function, have been applied to the 
iterative model, and they have been proven very effi cient in 
improving the simulation performance.

4) The iterative method has been shown to have very good 
parallel scalability with high effi ciency on different platforms. 
More than 75% parallel efficiency has been achieved with 
2,048 processors. With its parallel scalability, the iterative 
model can handle very large reservoir problems with millions 
of elements.  

5) The feature of the iterative approach allows coupling 
of multi-model and multi-physics simulations into one 
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framework. It is also feasible to use different discretizations 
for the pressure (e.g., Mimetic or MPFA methods with full 
tensors) and saturation (e.g., Discontinuous Galerkin) in 
reservoir simulation.  
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