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Abstract: Chokes are one of the most important components of downhole fl ow-control equipment. The 
particle erosion mathematical model, which considers particle-particle interaction, was established and 
used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid 
two-phase fl ow in a choke. The corresponding erosion reduction approach by setting ribs on the inner 
wall of the choke was advanced. This mathematical model includes three parts: the fl ow fi eld simulation 
of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the 
discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semi-
empirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet 
of the choke and the dominating factor affecting particle motion is the fl uid drag force. As a result, the 
optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved 
by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval 
between ribs (L).

Key words: Solid-liquid two-phase fl ow, discrete particle hard sphere model, choke, erosion rate, anti-
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1 Introduction
The mechanical damage to the surface caused by the 

impact of solid particles has been a serious problem in a 
variety of engineering applications. Any industrial process 
involving the transportation of solid particles entrained in 
the fl uid phase can be subject to erosion damage (Humphrey, 
1990; Finnie, 1995). In oil and gas production, the solid 
particles, which were used as proppants and carried by 
fracturing fluids with a high velocity in sand fracturing 
operations, can cause serious damage to downhole flow-
control equipment (chokes) as well as the surface of casing 
walls (Economides and Nolte, 2002; McCasland et al, 
2004; Vincent et al, 2004). During oil-field water injection 
operations, particles entrained in continuous fluids can also 
cause damage to the casing wall (Jordan, 1998; Richardson 
et al, 1986). Depending on the actual conditions, the erosion 
damage may be severe and extremely expensive, as it may 
be frequently necessary to replace or repair the device or 
component that is exposed and susceptible to the erosive 
environment (McCasland et al, 2004; Jordan 1998; McLaury 

et al, 1996; Wallace et al, 2004). Hence, it becomes more 
and more important to predict the erosion caused by particle 
impact accurately and to develop corresponding erosion 
reduction methods.

Computational Fluid Dynamics (CFD) has been used 
in the research on solid particle erosion for many years. 
CFD-based erosion prediction process includes several 
different aspects (Zhang, 2006): flow modeling, particle-
fluid interaction, particle-particle interaction, particle-wall 
interaction and particle erosion modeling. Each aspect by 
itself is very complex, and many researchers have made 
great efforts in order to better understand the mechanisms. 
The current erosion computational models are established 
based on different mechanisms, which show satisfactory 
application to predicting particle movement characteristics, 
calculating the erosion rate of wall surfaces and improving 
particle tracking in order to reduce erosion (Chen et al, 2006; 
Fan et al, 2004; Forder et al, 1998; Habib and Badr, 2004; 
McCasland et al, 2004; McLaury and Wang 1997; Song et 
al, 1996; Yao et al, 2002). However, most of these models 
neglect the infl uence of particle movement on the fl uid as well 
as particle-particle interactions. These are one-way coupling 
methods and only applicable to the conditions of low volume 
fraction of the discrete particle phase. The four-way coupling 
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 2.2.2 Fluid drag force
The coupling action between fluid and particle can be 

expressed through the fl uid drag force Fdrag of an individual 
particle. Using the modifi ed fl uid drag force correlation (Di 
Felice, 1994), the fl uid drag force can be described as follows:

computational model (Elghobashi, 1994), which takes 
particle-fl uid interaction and particle-particle interaction into 
consideration at the same time, has been rarely reported in the 
literature, especially in the study of erosion of well pipeline 
systems. 

The purpose of  this  paper  is  to provide deeper 
understanding of solid particle erosion characteristics in 
the choke and to change the fl ow fi eld geometry in order to 
reduce erosion. In this paper, the discrete particle hard sphere 
model was used to simulate particle-particle interaction; 
after obtaining information on particle movement (impact 
velocity and impact angle), the semi-empirical correlations 
were used to calculate particle erosion rate. Fortunately, 
this model not only takes particle-fluid interaction into 
consideration but particle-particle interaction as well, and is 
a four-way coupling method. Therefore, this model avoids 
the shortcomings of former models mentioned above and is 
applicable to the case of high volume fractions of the particle 
phase.

2 Mathematical model
The mathematical model includes the following three 

parts, namely the continuous carrier fl uid fl ow fi eld simulation 
by an Eulerian approach, particle-particle interaction 
simulation using a discrete particle hard sphere model by a 
Lagrangian approach, and erosion calculation using semi-
empirical correlations.

2.1 Governing equations of continuous fl ow
The equations of continuous flow are derived from the 

volume averaged Navier-Stokes equations, which take into 
account the infl uence of fl uid volume fraction and drag force 
between the fluid and particle phases. The continuity and 
momentum equations are expressed as follows:

          
(1)  

  

(2)

where ,  and p are the fl uid density, velocity, and pressure, 
respectively; g is gravity acceleration;  is the fluid shear 
stress;  is the volume fraction of fl uid; and fdrag is volumetric 
fl uid-particle interaction force, which can be given as:

(3)

(4)

where ∆V and Vpi are the volume of a computational cell and 
the volume of particle i inside this cell, respectively; Fdrag is 
the fl uid drag force for an individual particle; n is the number 
of particles in the cell.

The fl ow is turbulent, and the fl uid turbulence is treated 
with the standard   turbulent model.

2.2 Discrete particle hard sphere model
2.2.1 Inter-particle collision model

Inter-particle collision is described by a hard sphere 
model. The hard sphere model is based on binary quasi-
instantaneous collisions. It neglects particle deformation 
during collision, resulting in a high calculation efficiency 
(Crowe et al, 1998).

Collision of two particles can be shown in Fig. 1. All the 
post-collision velocities can be expressed as follows:     

(5)
    

(6)

(7)

(8)

for the case where the two spheres slide, and
 

 (9)

(10)

(11)

(12)
                                     

for the case where two spheres stop sliding during the 
collision process,where superscript 0 means before collision; 
μs is fraction coeffi cient; e is the coeffi cient of restitution; n 
is the unit normal vector from particle 1 to particle 2 at the 
moment of contact; m is the particle mass; R is particle radius; 
v is particle velocity;  is angular velocity; G0 is the relative 
velocities between particle centers before collision, and Gct

0
 is 

the tangential component of the relative velocity; t is the unit 
tangential vector at contact point.

Fig. 1 Particle-particle collision
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(13)

with 
 

where dp is the particle diameter; uf is the fl uid velocity; up is 
the particle velocity; Cd0 and Rep are the fl uid drag coeffi cient 
and particle Reynolds number, respectively, and they can be 
expressed as follows:

2.4 Criterion for occurrence of collision of two 
particles in the hard sphere model

In the hard sphere model system, the initiative search 
approach is used to judge the binary collisions. It is supposed 
that the two particles i and j happen to collide after the time 
∆tc, so Rij=rij+vij∆tc, as a result ∆tc can be calculated with the 
following expression (Kang and Guo, 2006):

 (9)

with

where r is the location vector of particles.
If ∆tc<0 or if rij

.vij>0, the two particles will not collide.

3  Phys i ca l  prob lem and  s imula t ion 
conditions

The computational domain is a two-dimensional 
rectangular region of 0.1m×0.038m, which is the same as the 
actual size of the choke, the inlet radius is 0.024 m and the 
outlet diameter is 0.018 m, as shown in Fig. 2. The hatching 
boundary is a wall boundary condition, where a no-slip 
boundary condition is imposed for fl uid fl ow. In the particle-
wall collision, the interaction of a particle with the wall is 
modeled in the same manner as a particle-particle collision, 
and the wall is considered as one particle with infi nitely large 
diameter (Crowe et al, 1998). The top dashed axis boundary 
is a symmetry boundary and zero normal gradients are used 
for all variables. As for particles, the reflective boundary 
condition is used on the axis boundary. The direction of 
gravity goes along the X direction. The fluid flows into 
the choke from the inlet, where a velocity inlet boundary 
condition is imposed for continuous fl ow, and the fl uid fl ows 
out through the outlet, where a pressure outlet boundary 
condition is imposed.

2.2.3 Equation of particle motion
The behavior of all particles is simulated by a Lagrangian 

approach. Because inter-particle collision is described by 
the hard sphere model, the inter-particle force and particle 
shape deformation can be neglected (Crowe et al, 1998). 
Thus forces acting on an individual particle mainly include 
gravitational and fl uid drag forces during particle movement 
(Zhang, 2006). Other forces such as virtual mass force, 
pressure gradient force, Saffman lift force, Magnus lift 
force and Basset history force acting on a particle could 
be neglected in this study (Habib and Badr 2004; Habib et 
al, 2007; Meng and Van der Geld 1991). The motion of an 
individual particle is determined by Newton’s second law of 
motion. The equation of particle can be written as follows:

(14)

where mp is the particle mass. 

2.3 Semi-empirical correlations used to calculate 
particle erosion rate

According to the dynamic characteristics of solid-liquid 
two-phase flow (which is different from gas-solid two-
phase flow) and the material characteristics of the choke, 
the calculation model proposed by Mengütürk and Sverdrup 
(1979) was applied in this study:

 

(15)

  (16)

where Ev is the particle erosion rate, mm3/g; W1 is the wall 
impact velocity of the solid particle; and 1 is the impact 
angle of the solid particle. 

 The continuous fluid is water with a density of 1,000 
kg/m3 and a dynamic viscosity of 1.005×10-3 Pa.s. The 
calculation temperature is room temperature, and the fl ow in 
the choke is turbulent. The velocity at inlet section follows 
the 1/7 power function distribution, and the turbulent center 
velocity was chosen as 5 m/s.  

The particles all have the same diameter (0.4 mm) 
and density (2,650 kg/m3). The friction coefficient and 
restitution coefficient are 0.4 and 0.9, respectively. In the 

Fig. 2 Computational domain and coordinate system
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Fig. 7 Probability distribution of particle-wall impact velocity
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Therefore setting ribs on the inner wall of the choke can 
signifi cantly reduce particle average impact velocity, which is 
a major reason for reducing erosion by setting ribs.

In order to discuss the erosion severity of the choke with 
different rib geometrical parameters, the relative erosion rate 
E/E0 is defined, namely the ratio of erosion rate of choke 
wall after setting ribs E and that of before setting ribs E0. The 
smaller the relative erosion rate is, the better the anti-erosion 
performance. And the relative erosion rates at different rib 
geometrical parameters are shown in Fig. 8. The mean relative 
erosion rate of the choke is from 0.04 to 0.61, with an average 
value of 0.14, after setting ribs. That is to say setting ribs can 
improve the anti-erosion performance of the choke greatly, 
which show good agreement with the above conclusions. 
Fig. 8 also indicates that rib type F has the smallest relative 
rate, in other words, the best anti-erosion performance can 
be achieved when there are 4 ribs in the choke, each of them 
with a height (H) of 3 mm and a width (B) of 5 mm spaced 5 
mm apart (L).

5 Conclusions
The following conclusions can be drawn from the above 

discussion:
1) The discrete particle hard sphere model can simulate 

the dynamic process of solid particle movements and the 
non-uniform discrete characteristics of particle distribution 
in a choke. At the same time, this model can provide detailed 
information on the impact velocity, impact angle and impact 
location of an individual particle.

2) Particles accumulate densely in a narrow domain from 
inlet to outlet of the choke, where the largest particle velocity 
occurs. The dominating factor affecting particle motion in 
solid-liquid two-phase fl ow is the fl uid drag force, but particle 
collisions also play an important role.

3) When the choke has no ribs, only 40% of particles have 
a velocity of less than 0.5 m/s. With ribs in the choke, over 
90% of particles have a velocity of less than 0.5 m/s. That is 
to say the average impact velocity of particles lies in the low 
impact velocity domain after setting ribs.

4) Using ribs can greatly improve the anti-erosion 
performance of the choke, and the relative best anti-erosion 
performance can be achieved when setting 4 ribs, each of 
them with a height (H) of 3 mm and a width (B) of 5 mm at 5 
mm spacings (L).
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