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Abstract: Long delays and poor real-time transmission are disadvantageous to well logging networks 
consisting of multiple subnets. In this paper, we proposed a time-driven transmission method (TDTM) to 
improve the effi ciency and precision of logging networks. Using TDTM, we obtained well logging curves 
by fusing the depth acquired on the surface, and the data acquired in downhole instruments based on the 
synchronization timestamp. For the TDTM, the precision of time synchronization and the data fusion 
algorithm were two main factors infl uencing system errors. A piecewise fractal interpolation was proposed 
to fast fuse data in each interval of the logging curves. Intervals with similar characteristics in curves 
were extracted based on the change in the histogram of the interval. The TDTM is evaluated with a sonic 
curve, as an example. Experimental results showed that the fused data had little error, and the TDTM was 
effective and suitable for the logging networks. 
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1 Introduction
Due to good performance in device interconnection, 

transmission efficiency and universal application compared 
with those of other field buses, computer networks play 
an increasingly important role in well logging systems, 
and become one of the most important characteristics 
of the developing fifth generation network well logging 
systems (Xiao et al, 2003; Tang, 2007; Wang et al, 2006). 
Although the switched Ethernet is a perfect solution for 
providing high throughput, short delay and low delay jitter 
to meet the demands of multi-measurement and control 
networks (Lian, 2001), the well logging network is a typical 
remote measurement and control network consisting of 
switched Ethernet and routers (Wu et al, 2005), due to 
strict environment limitations, such as wiring connection, 
transmission distance, and device dimension. One simple 
instance is that the surface equipment composes a control 
subnet, the surface telemetry instruments (or surface gateway) 
and the downhole wireline telemetry cartridge (or downhole 
gateway) compose the transmission subnet, and all the 
downhole instruments compose an instrument subnet. We 
discovered that the logging network is a network focusing 
on measurement, which needs to acquire accurate data and 
record the corresponding measurement parameters, such as 
time, depth, and length. The parameter data are transmitted 
from the surface equipment to downhole instruments through 
multi-hop networks. This process degrades the network 
utilization and increases delay, therefore it is impossible to 
meet the real-time demands. Some methods to increase line 

speed, reduce time delay and optimize the router software 
cannot improve the real-time performance effectively, and are 
also very diffi cult to implement.

However, little research on this problem has been 
published. In this paper, we presented a time-driven 
transmission method (TDTM) as an effective solution based 
on accurate time synchronization and fast data fusion. During 
data acquisition, the real-time transmission of parameter 
information from the surface equipment to downhole 
instruments was not required. The TDTM is used to reduce 
network traffic and improve network efficiency for high 
precision measurements.

2 Time-driven transmission model

2.1 Data fl ow chart 
Due to long delays and low transmission rates, the existing 

logging systems mainly work in a “request-reply” mode, 
as illustrated in Fig. 1(a) (Meng et al, 2003). The surface 
equipment sends commands and the depth parameter as a 
“request” to downhole instruments, and then the instruments 
start to acquire data at the depth and transmit the data as a 
“reply” to the surface equipment after a delay. Finally, the 
surface equipment obtains the logging curve, which describes 
the change of measured data with depth. After transmitting 
commands to downhole instruments, the surface equipment is 
inactive until receiving the acquired data or state information 
from downhole instruments. With the increase of downhole 
sensors and parallel processing demand, the “request-reply” 
mode becomes ineffi cient in logging applications.

The well logging network using the TDTM consists of 
the surface control center (SCC), the surface time-depth 
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acquiring unit (TDAU), the surface time-depth-data fusion 
unit (TDDFU), system time synchronization unit (STSU), 
transmission network (TN), and downhole logging tools 
(DLT). The SCC forms the work command tables and sends 
them to downhole instruments by networks. The STSU 
accurately synchronizes each node’s clock of downhole 
instruments and surface equipment. According to the 
predetermined depth interval, when hardware interrupts of 
sampling depth occur, the TDAU acquires the depth and 
corresponding timestamp, and then obtains a time-depth 
pair (ti, di). Many time-depth pairs compose the time-depth 
sequence <t, d>. We assume that the time-depth sequence 
<t, d> satisfies a function d = f (t). Generally, d = f (t) is 
a piecewise linear function. Even if the intervals of depth 
interrupt are equal, when the speed of the logging cable 
changes, the intervals of timestamps are not always equal.

The downhole instruments record the measured data 
Ri corresponding to the time Ti and obtain the time-
data pair (Ti, Ri). Many time-data pairs compose a time-
data sequence <T, R>. Then, the telemetry instruments 
transmit the sequence <T, R> to the TDDFU. We assume 
that the time-data sequence <T, R> satisfies a function 
R = g (T). Because of the difference in working mechanism 
of telemetry instruments, there are much data acquired at 
unequal time intervals. The TDDFU fast fuses the <t, d> 
and <T, R> sequences, and finally obtains the depth-data 
sequence <d, r>, i.e., the logging curve. Fig. 1(b) shows the 
basic fl owchart of the TDTM.

can obtain the fused depth-data sequence by the following 
equation:

                                   (1)

( )
( )

d f t
R g T
t T
r R

The logging curve is r = g (f -1(d)) = h (d), but actually it is 
very difficult or impractical to obtain r = h (d). In order to 
explain more clearly, we analyze the mapping relationship, 
assuming that the measured data r is one dimensional, as 
shown in Fig. 2(a).

In Fig. 2, (ti, di) and (tj, dj) are from the time-depth 
sequence, (Ti, Ri) and (Tj, Rj) are from the time-data sequence, 
and (di, ri) and (dj, rj) are to be obtained. Because the time-
data sampling and the time-depth sampling are asynchronous, 
the sampling intervals of the two sequences are unequal. 
Furthermore, the forms of g(T) and f(t) are unknown, so h(d) 
has no explicit expression. Because Ti and ti are different, 
the goal of the depth-data fusion is to obtain the optimal 
(t, r) from (T, R) by an effective interpolation, as shown in 
Fig. 2(b). 

Compared with the “request-reply” mode, the TDTM uses 
the data fusion method based on the time synchronization unit 
and data fusion unit. The TDDFU is an important module in 
TDTM for fast and accurate data processing. In the following, 
we present a fast data fusion algorithm based on the analysis 
of the mapping model of time-depth-data.

2.2 Time-depth-data mapping
After the time is synchronized in the logging network, we 
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Usually, d = f (t) is piecewise linear, and r = h (d) and 
r = g (t) have similar monotonicity, although they are in 
different variable domains. This conclusion can be proven 
simply as follows: Because d = f (t) is piecewise linear, 
we assume that it has the form d = f (t) = at+b in its linear 
interval, where a is a positive constant (if a is negative, 
the conclusion will be the same), and b is an undetermined 
constant. Then, t=d/a−b/a and r=g(d/a−b/a)=h(d), so r = h (d) 
and r = g (t) have a similar monotonicity. This conclusion is 
very important to the selection of the interpolation algorithm 
in the time domain to obtain (ti, ri) from (Ti, Ri).

3 TDTM error analysis 
We focus on the main factors infl uencing the performance 

of the TDTM. In fact, the data processing shows that t and 
T are not always equal, and do not satisfy Eq. (1). We can 
describe their relation by the following equation:

 (2)t T t s

where Δt is the error resulting from synchronization, and Δs is 
the error from the asynchronous data acquisition of the surface 
equipment and downhole instruments. Thereby, there are two 
factors infl uencing the performance of the TDTM. One factor 
is the precision of the network time synchronization, and the 
other is the data fusion algorithm. Much work has been done 
on the methods to highly synchronize the network time. In 
this paper, an effi cient interpolation algorithm was proposed 
to minimize the error from asynchronous acquisition. The 
discussion in the following section will focus on the infl uence 
of Δt and Δs.

3.1 Time synchronization error
We suppose that there is an absolute accurate time t, and 

the time synchronization error between surface equipment 
and downhole instruments is Δt. When (ti, di) is acquired on 
the surface at ti, but (ti +Δt, ri) is recorded in the downhole, 
so they will be mistaken as the measurement data at 
different depth. If Δt increases, it will result in an increase 
of depth error. In the TDTM, ti is stored in a timestamp 
field of the packet. There are two basic attributes related 
to the timestamp. One is time granularity, which indicates 
the resolution of the system timer. In our experiment, the 
granularity of the platform named ELIS-800 is 1.6 μs, which 
means that the time counter increases by one per 1.6 μs. The 
other attribute is the bit number allocated for storage, and the 
bit number of ELIS-800 is set to 32 bit.

Generally, the cable speed, defined by v, is a piecewise 
constant less than 30 m/min. The depth d and time t satisfy 
the following equation:

(3)00
( ) d

t
d t v t d

Therefore, the depth error is Δd = vΔt. When the time 
error Δt maintains a specific value, if v increases, Δd will 
become greater. For example, in PEXWL (Platform Express 
Integrated Wireline Logging), the cable travels at a speed of 
v =3600 ft/hr = 0.3048 mm/ms. In the ELIS-800 experimental 

platform, the maximum Δt is equal to 10 ms, so the maximum 
depth error achieves Δd=3.034mm, which is acceptable in 
the logging system. Furthermore, the time delay in logging 
network is more than 100 ms, which results in a more serious 
depth error without the TDTM.

3.2 Infl uence of interpolation algorithm on error
There are many interpolation algorithms providing 

different complexities and levels of performance, such as 
bilinear, cubic spline, Lagrange, and Hermite interpolation. 
The optimum interpolation algorithm should retain the 
characteristics of the sequence (Tj, Rj) to the greatest extent 
(Burnside and Parks, 1990). The data acquired by telemetric 
instruments, such as sonic waves, gamma rays, and natural 
electric potentials, refl ect the attributes of geological objects. 
The existing literature and the actual analysis results show 
that different logging curves have different characteristics, 
and most logging curves have obvious fractal characteristics 
in the entire depth domain (Li and Xiao, 2002; Li, 2005; Lu 
and Li, 1996), so fractal interpolation can be used to improve 
the resolution. 

Usually, fractal dimension is a measure to determine 
whether the logging curve has fractal characteristics. 
Moreover, the fractal characteristics of logging curves change 
with geological structure. Well logging curves have different 
fractal characteristics in different depth intervals, even in the 
same well (Hewett, 1986; Liu et al, 2004). Table 1 gives the 
statistics of fractal dimensions of different interval lengths 
from a sonic sequence as shown in Fig. 4(a). This sonic 
sequence is recorded from the depth 2079 m to 2487 m, 
including 2675 points. The fractal dimensions are calculated 
by a box dimension algorithm.

From Table 1, we can see that the fractal dimension is not 
a constant and shows the different fractal features in different 
intervals. Therefore, piecewise fractal interpolation should be 
used to retain local characteristics and improve accuracy of 
data fusion.

4 Fast data fusion
Existing literature has focused on calculating the fractal 

dimension, discussing the performance of interpolation 
function, and deriving the error of fractal interpolation 

Interval length Max. Min. Average

50 1.1551 1.0577 1.1192

100 1.2042 1.1373 1.1694

150 1.2357 1.1743 1.2055

200 1.2557 1.1977 1.2309

2675 1.52 1.52 1.52

Table 1 Fractal dimensions of different interval lengths
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function (Li and Xiao, 2002; Li, 2005; Sha and Liu, 2004). 
Directly calculating the fractal dimension in real-time analysis 
of the logging curves has some disadvantages, such as large 
iterations, poor real-time performance and high computation 
load in the interpolation interval. We present a fast data fusion 
algorithm based on the change in the histogram of time-
data. This algorithm has more advantages, such as retaining 
local characteristics, reducing the usage of resources, and 
improving computation speed.

The histogram of data with the same fractal characteristics 
usually has a dense, symmetrical or quasi-symmetrical 
distribution, such as normal distribution or box-type (Li and 
Xiao, 2002). Therefore, we propose a method to extract the 
intervals for piecewise interpolation based on the change 
of histogram in the distribution features. In each extracted 
interval, the self-affi ne fractal interpolation method is used to 
obtain a high-resolution curve.

4.1 Logging curve piecewise extraction
4.1.1 Extract statistical parameter 

Firstly, we obtained the histogram of Mn logging data 
Ri in the interval φn, and then calculated the mean μn and 
variance σn of Ri. Then, we extracted the highest peak Pm in 
the histogram and its corresponding measurement value ym. 
Finally, we calculated the peak drift ym−ym-1 compared with 
the previous interpolation interval φn-1.
4.1.2 Determination of PP-skewness and kurtosis 

The PP-skewness and kurtosis are two properties of the 
stochastic variable distribution. The PP-skewness defi ned by k 
is a measure of symmetry distribution (Chen and Cui, 2004). 
The PP-kurtosis defi ned by g is a measure of the density of 
the probability distribution. The k of normal distribution is 
usually 0, and g is 3. If k is far away from 0 or g far away 
from 3, we can conclude that it may be much different from 
the normal distribution. The PP-skewness and kurtosis of 
stochastic logging data R1, R2,..., Rm in φn are calculated 
according to the following equation:

                      (4)

3
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. If a large change exists from kn-1<0 to 

kn>0, or from kn-1>0 to kn<0, which is a jump round the zero 
point, a new fractal interpolation should start in the interval 
φn.

4.1.3 Determination of peak and variance accumulative 
drift 

The peak accumulative drift from interval φl to φn is 

defined by 1( , )
n

i i
i l

P l n y y , where n > l, and variance 

accumulative drift from interval φ l to φn is defined by 

1( , )
n

i i
i l

F l n , where n > l. If any one condition in the 

following equations is satisfi ed:

                   

(5)
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where, min min ( , 1), , ( , 1)P P l l P l n ,

max max ( , 1), , ( , 1)P P l l P l n , 

min min ( , 1), , ( , 1)F F l l F l n , 
 

max max ( , 1), , ( , 1)F F l l F l n ,  then φn has a different 
distribution characteristic from φ l, ..., φn-1, and a new 
piecewise fractal interpolation starts in φn. Peak and variance 
accumulative drift are used to detect whether current 
intervals have similar characteristics or have gradual changes 
compared with the previous interval. 
4.2 Piecewise fractal interpolation and fusion

Supposing that there are Mn points in the interpolation 
interval φn and N data points in the mapping interval, the 
general form of the one-dimensional self-affi ne interpolation 
function is as follows:

i

i

ii

i
i f

e
y
x

dc
a

y
x 0 , where 1id  

The detailed procedure of iterative interpolation can refer 
to two papers (Manousopoulos et al, 2008; Mazel and Hayes, 
1992). The piecewise fractal interpolation interval φn slides 
continuously with receiving the real-time data. It is therefore 
the so-called sliding window piecewise fractal interpolation. 
A higher-resolution time-data curve <T ' , R'> is obtained by 
piecewise fractal interpolation. However, the expected ti in 
Fig. 2 may not be at Ti in the <T ' , R'>. To solve this problem, 
the neighboring linear interpolation is taken to obtain (ti, ri)
from the two nearest values, i.e., the previous (T 'm, R'm) and 
the next (T 'n, R'n). Therefore, the fusion curve ,d r  is 
obtained from <t, d> and <t, r>.

5 Simulation and results
In order to evaluate the time-depth-data fusion algorithm, 

a sonic curve acquired in the depth of 2079-2487 m is given 
as a reference sequence <d, r>, whose depth sampling interval 
is 0.1524 m. The simulation of depth-data fusion adopts 
the model shown in Fig. 3. After obtaining the time-depth 
sequence <t, d> and time-data sequence <T, R>, the ,d r  
sequence is gained by piecewise fractal interpolation and 
fusion, where the threshold parameters in Eq. (5) are set to 
α = 1.25, β = 2. Finally, the error curve ,d r  between the 
<d, r> and ,d r  sequences is calculated. 
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In order to compare the performance of piecewise fractal 
interpolation, we only use a linear interpolation method to 
obtain (ti, ri) from the two nearest values, i.e., the previous 
(Ti, Ri) and the next (Tj, Rj) shown in Fig. 2, and then obtain 
the other fused curve ,d r  and corresponding error curve 

,d r . The experimental results are illustrated from Fig. 
4(b) to Fig. 4(i).

From the results shown in Fig. 4, the reference sonic 
curve shown in Fig. 4(a) has a large and continuous amplitude 
change at the depth of approximately 2200 m. When the time-
depth sequence is linear, the time-data curve has a similar 
monotonic property to the reference sequence as shown in 
Fig. 4(b) and Fig. 4(c). The variance and peak accumulative 
drift have a large jump at the depth of approximately 2200 m, 
which indicates an evident change in distribution shown in 
Fig. 4(d) and Fig. 4(e). The PP-skewness and PP-kurtosis (both 
in a small amplitude) curves shown in Fig. 4(f) accord with 
the characteristics of dense distribution. After the piecewise 
fractal interpolation and fusion, the error between the fused 
curve shown in Fig. 4(g) and the reference curve is smaller 
as a whole, compared with simple linear interpolation, as 
illustrated in Fig. 4(h) and Fig. 4(i).
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(g) Fused depth-data sequence
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(i) Error curve ,d r
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If the fractal interpolation is not used in each interval, but 
in the whole depth domain of the acquired data, there will 
be a long delay. For example, the delay for the sonic curve 
shown in Fig. 4(a) includes two parts: 1) The first part T1 
is the time waiting for acquiring all the data of 2675 depth 
points. If the speed of the cable is 30 m/min, T1 is (2487-
2079)/30×60=816 seconds. 2) The second part is the time of 
interpolation for all sampling points T2. On our simulation 
platform, T2 is 240 seconds. However, the time delay of 
the piecewise fractal interpolation proposed in this paper is 
approximately 15 seconds on the same platform. Therefore, 
the piecewise fractal interpolation can improve the real-time 
processing for the TDTM and logging networks.

6 Conclusions
The time-driven transmission method does not need a 

high-level real-time network. However, the well logging 
network should keep an accurate synchronization time to 

(e) Variance accumulative drift
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reduce depth error, which can be achieved with the existing 
time synchronization solutions. Time synchronization 
is a main factor for the TDTM to decrease errors. The 
method to extract fractal intervals based on the change of 
histogram characteristics is very effective. The piecewise 
fractal interpolation can obtain high-resolution sequences 
for  data fusion,  which meets the demand of high-
precision transmission and accurate logging interpretation. 
Experimental results show that the fused data have less errors 
and the time-driven transmission method is effective and 
suitable for the logging networks.
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