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a b s t r a c t

A 2.5D finite-difference (FD) algorithm for the modeling of the electromagnetic (EM) logging-while-
drilling (LWD) tool in anisotropic media is presented. The FD algorithm is based on the Lebedev grid,
which allows for the discretization of the frequency-domain Maxwell's equations in the anisotropic
media in 2.5D scenarios without interpolation. This leads to a system of linear equations that is solved
using the multifrontal direct solver which enables the simulation of multi-sources at nearly the cost of
simulating a single source for each frequency. In addition, near-optimal quadrature derived from an
optimized integration path in the complex plane is employed to implement the fast inverse Fourier
Transform (IFT). The algorithm is then validated by both analytic and 3D solutions. Numerical results
show that two Lebedev subgrid sets are sufficient for TI medium, which is common in geosteering en-
vironments. The number of quadrature points is greatly reduced by using the near-optimal quadrature
method.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Electromagnetic (EM) methods have been widely used in the
field of exploration geophysics, such as controlled source electro-
magnetic survey (CSEM), crosswell EM method, and borehole EM
logging. One of the widely-used borehole EM techniques is the
directional logging-while-drilling (LWD) resistivity measurement
(DRM), which provides both resistivity and boundary information
for accurate geosteering (Li et al., 2005, Bell et al., 2006; Bittar et al.,
2009; Hawkins et al., 2015; Omeragic et al., 2006). In recent years,
the more powerful ultra-deep directional resistivity measurement
has also been introduced to the industry (Seydoux et al., 2014;
Hartmann et al., 2014; Wu et al., 2018; Wang et al., 2022). The new
tool, which can detect 30 m or more around the borehole, enables
engineers to map reservoirs for better geosteering (Antonsen et al.,
2014; Thiel and Omeragic, 2017).

In geosteering, modeling and inversion are performed to help
field engineers to understand the EM tools’ responses and to obtain
the formation resistivity profile (Pardo and Torres-Verdín, 2015;
y Elsevier B.V. on behalf of KeAi Co
Zhou et al., 2016; Yan et al., 2020). Analytic solutions, which assume
the formation model to be planarly layered with anisotropic re-
sistivities (Hu et al., 2018; Hong et al., 2021), have been very helpful
in this process. However, the DRM shows that unconformities,
pinch-outs, faults, and other lateral changes appear frequently.
Thus, analytic solutions are not sufficient for real-time applications.
As a result, 2.5Dmodeling, which assumes the formation properties
are arbitrarily distributed in the defined xz-plane but invariant
along the y-axis, is employed in the complex scenarios (Chen et al.,
2011; Dupuis et al., 2014; Zeng et al., 2018; Chaumont-Frelet et al.,
2018, Wu et al., 2020).

The finite difference (FD) method is commonly used to imple-
ment the 2.5D or 3D modeling of EM responses (Abubakar et al.,
2008; Lee and Teixeira, 2007, Sun and Hu, 2021). Typically, the FD
scheme is cast on a staggered (Yee) grid (Yee, 1966). The advantage
of the Yee grid is that in isotropic media, all the filed components
are placed such that the required spatial derivatives can be calcu-
lated using second-order central differences. To extend the FD
scheme based on the Yee grid to handle anisotropic media, one
must interpolate the electric field components at an electric field
node from the values of neighboring nodes. However, there are
some disadvantages to using such an interpolation strategy
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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(Davydycheva et al., 2003), such as 1) the interpolation strategy
reduces the accuracy of the FD scheme; and 2) the interpolation
strategy destroys the duality between the electric and magnetic
fields.

The Lebedev grid is an alternative to the Yee grid (Lebedev,
1964). No interpolations are needed when using this grid, since
all the electric-field components are collocated. Furthermore, the
Lebedev grid can better represent materials with planar disconti-
nuities. The 3D modeling of an EM logging tool using the Lebedev
grid has been implemented by Davydycheva et al. (2003) in Car-
tesian coordinates. The number of unknowns is four times of those
of standard Yee grids, since the Lebedev grids can be decomposed
into four shifted Yee grids. However, Davydycheva et al. (2003) has
shown that due to the property of error cancellation, the cell sizes
can be much coarser than those using standard Yee grids. There-
fore, compared to the traditional staggered grid, the Lebedev grid
shows two advantages: (1) it requires no interpolation to calculate
the magnetic fields (electric fields) from electric fields (magnetic
fields); (2) it can be more efficient by taking the advantage of error
cancelation.

In this paper, we present a 2.5D FD algorithm based on the
Lebedev grid to model the responses of the DRM. We will focus on
the transverse isotropic (TI) medium, which is the most common
case in geosteering. A well may penetrate the formation with an
arbitrary dip angle. It is shown that instead of using four Lebedev
subgrids, only two subgrids are needed in TImedium.We also show
that using the standard Lebedev grid, this method can be extended
to full anisotropic medium readily. The remainder of this paper is
organized as follows. Section II presents the theory, the Lebedev
grid, and the considerations in numerical implementation. Section
III will focus on the near-optimal quadrature method. Section IV
provides experimental results to validate the proposed algorithm
and to showcase its performance. Section V is dedicated to the
conclusions.
2. Theory

2.1. Maxwell's equations in anisotropic medium

We formulate the problem in the frequency domain with the
time convention e-iut. The Maxwell's equations with electric and
magnetic current sources in anisotropic media can be expressed as

V�E ¼ iumH �M (1a)

V�H ¼ �iuε*E þ sE þ Js ¼ �iuεE þ Js (1b)

Here, E and H are the electric and magnetic fields, respectively,
and Js and M are the electric and magnetic current sources,
respectively. m is the permeability, which is commonly assumed to
be a scalar in borehole geophysics. u is the angular frequency. ε ¼
ε
* þ is=u, ε* and s are the dielectric constant and conductivity

tensors in (x'y’z’) coordinate (as shown in Fig. 1). The formation is
defined in the primed coordinates (x'y’z’), which has a relative dip
angle a with respect to the unprimed coordinates (xyz) (see Fig. 1).
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The TI medium is taken here as an example. The formation co-
ordinates are denoted as (x'y’z’). We cast the FD scheme on a Car-
tesian coordinate (Fig. 1), denoted as (xyz), which is obtained by
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rotating the x'y’z’ coordinates with a dip angle a along with the y-
axis. The x-axis is coincident with the projection of well trajectory
in the x'z’ plane. A relative angle b may exist between the well
trajectory and the x-axis, which indicates the y coordinates of the
transmitter and receiver antennas may not be zero. The complex
dielectric constant tensor in the formation coordinates ((x'y’z’) co-
ordinate) is given by:
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In the unprimed coordinates, the complex dielectric constant
tensor can be expressed as:

ε¼R�1
εR (4)

Here, R is the rotation matrix relative to the dip angle a. R is given
by:

RðaÞ¼
2
4 cos a 0 �sin a

0 1 0
sin a 0 cos a

3
5 (5)

Thus, the complex dielectric constant tensor provided in Eq. (2)
would be sufficient to describe most scenarios in borehole
geophysics, such as TI medium and biaxial anisotropic medium,
especially in 2.5D cases.

Eliminating H from Eq. (1), we obtain:

V�V� E � k2E ¼ iumJs � V�M (6)

Here, k2 ¼ u2
εm. Eq. (6) can be discretized according to the

finite-difference approach. To take advantage of the 2D structure of
the configuration (invariant along the y-axis), we introduce the 1D
spatial Fourier Transform and its inverse with respect to the y-co-
ordinate axis:

u
��

x; ky; z
� ¼ Ffug ¼

ð∞
y¼�∞

dyeikyyuðx; y; zÞ (7)

and the inverse transform:

uðx; y; zÞ ¼ F�1�u�� ¼ 1
2p

ð∞
ky¼�∞

dye�ikyyu
��

x; ky; z
�

(8)

Applying the Fourier transforms to Eq. (6), we obtain:

V�V� E � k2E ¼ iumJs � V�M (9)

Here V ¼ v=vx e!x þ iky e
!

y þ v=vz e!z. E, Js, and M represent the
electric field, current source, and magnetic source in the spectral
domain, respectively.

Using the definition of the curl operator and considering that all
the y-related conductivities (except ,yy) are zero, Eq. (9) can be
decomposed into three equations:



Fig. 1. Illustration of the coordinates used to describe the well trajectory and formation.
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Upon discretization, we obtain the FD counterpart of Eq. (9),
written in matrix notation as:

A , x ¼ b; (11)

where A is a stiffness matrix resulting from the left side of Eq. (9), x

is a vector containing the electric field at all nodes, and b is a vector
resulting from the right side of Eq. (9) at all nodes. After solving Eq.
(11), the electric and the magnetic field vectors at the FD nodes can
be obtained from:

Eðx; y; zÞ ¼ 1
2p

ð∞
ky¼�∞

dkye�ikyyE
�
x; ky; z

�
(12a)

Hðx; y; zÞ¼ 1
ium

V� Eðx; y; zÞ (12b)
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2.2. 2.5D Lebedev grids

We introduce the 2.5D Cartesian coordinates:

ðxi; bxi; zk;bzkÞ; i ¼ 1;/Mx þ 1 k ¼ 1;/Mz þ 1
where x1 ¼ bx1 z1 ¼ bz1 xi < bxiþ1 < xiþ1 zk <bzkþ1 < zkþ1

(13)

Here, Mx þ 1, and Mz þ 1 are the maximum node number in x,
and z directions, respectively. We denote xi and zk to be the
primary-grid nodes, and bxi and bzk to be the dual-grid nodes. The
unknown fields of E and H are determined by the method of FDs on
this 2.5D Lebedev grid. In this grid, the Ex, Ez, Hx, and Hz (Nony-)
components are collocated, but staggered half a spatial step by the
Ey and Hy components (Fig. 2). We assign all Nony-components to
nodes denoted as (xi,zk) and (bxi,bzk), and y-components to nodes
denoted as (xi,bzk) and (bxi,zk).

We consider the standard Yee grid where the E and H compo-
nents have the indices:

Exðxi; zkÞ; Eyðbxiþ1; zkÞ; Ezðbxiþ1;bzkþ1Þ
Hxðbxiþ1;bzkþ1Þ;Hyðxi;bzkþ1Þ;Hzðxi; zkÞ

(14)

We call this Yee grid “subgrid 1”, and the other grid, which is
constructed from the standard Yee grid by shifting the components
of E and H by hxi/2, and hzk/2, respectively, in the (±) x- and (±) z-
directions, “subgrid 2”. On subgrid 2, the components of E and H
have the indices:

Exðbxiþ1; bzkþ1Þ; Eyðxi;bzkþ1Þ; Ezðxi; zkÞ
Hxðxi; zkÞ;Hyðbxiþ1; zkÞ;Hzðbxiþ1;bzkþ1Þ

(15)

Superposition of these two subgrids results in the 2.5D Lebedev
grid, denoted as Lebedev grid A. If the off-diagonal elements of the
complex dielectric constant tensor are non-zero, these two sub-
grids are coupled. Otherwise, if only diagonal elements are non-
zero, these two subgrids are decoupled. Furthermore, the Ey com-
ponents of the two subgrids are always decoupled, since y-related
conductivities (except yy component) are all zero.



Fig. 2. Illustration of the Lebedev grid on 2.5D Cartesian coordinates. The Ex, Ez, Hx, and Hz (Nony-) components are collocated, but half a spatial step staggered by the Ey and Hy

components. We assign all Nony-components to nodes denoted as (xi, zk) and (bxi;bzk), and y-components to nodes denoted as (xi bzk) and (bxi , zk). (d) is the standard Yee grid, while (e)
can be regarded as the standard grid shifting hx/2 and hz/2 in x and z directions.
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2.3. Extension to arbitrary anisotropic medium

The above grids can be extended to an arbitrary anisotropic
medium by introducing a shifted Lebedev grid B (as shown in
Fig. 3). Lebedev grid can be regarded as shifting the grid A hxi/2, and
hzk/2 in the (±) x- and (±) z-directions, respectively. Grids A and B
comprise the complete Lebedev grid, in which all the E and H
components are collocated, and thus, can handle arbitrary
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resistivity (conductivity) anisotropy. In the full anisotropicmedium,
Eq. (10) can be rewritten as:

k2yEx �
v2

vz2
Ex þ iky

v

vx
Ey þ v2

vxvz
Ez

�u2m
	
εxxEx þ εxyEy þ εxzEz


¼ iumJx �
�
ikyMz � v

vz
My

� (16a)



Fig. 3. Illustration of the Lebedev grid in an arbitrary anisotropic medium. left: grid A as described above; middle: grid B, which can be regarded as grid A shifts hxi/2 and hzk/2 in the
x and z directions, respectively. Grids A and B comprise the complete Lebedev grid, which can handle arbitrary anisotropy. In the complete Lebedev grid, all the E and H components
are collocated.
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Here, all the Ex, Ey, and Ez components in Eq. (16) are defined at
the same location. However, one should note that, they would
belong to different subgrids and Eq. (16) should be cast on all
subgrids. Taking Eq. (16a) as an example, for subgrid 1 in Lebedev
grid A, the left-hand side (LHS) can be expressed as:

k2yE
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vz2
E
1
x þ iky

v

vx
E
1
y þ

v2

vxvz
E
1
z � u2m
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εxxE
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B
y þ εxzE

2
z

i
(17)

Here, the upper scripts of the E components are the numbers of the
corresponding subgrids. Similarly, grid B can be decomposed into
two subgrids. However, we will focus on Lebedev grid A (or equally
grid B), in our investigation.

2.4. Numerical considerations

Geosteering in real scenarios is a full 3D problem. However, 3D
forward modeling is time-consuming, and an efficient way to
handle this problem is to project the 3D system into a 2D plane. The
coordinates are set as illustrated in section II.A (Fig. 1). In dis-
cretization, uniform grids are used in the x and z directions within
the scope of the tool (or within a depth range (a depth window)
when we try to model the tool's responses inside a single segment
at once) to improve the accuracy of the model. The minimum cell-
sizes are 2 cm in both x and z directions. The cell sizes gradually
increase to the maximum size, which is dependent on the skin
depth outside of the depth window. Both the width and the height
of the window are set to 1.5 times the tool length, and that is
around 3.5 m for the DRM in our cases. Eq. (9) or Eq. (16) is then
discretized on the proposed 2.5D Lebedev grid. This leads to a
system of linear equations that can be solved using the multifrontal
direct solver. The direct solver enables the simulation of multi-
253
sources at nearly the cost of simulating a single source for each
frequency. The IFT is evaluated using the near-optimal quadrature,
which decays fast, to obtain the E and H components at all the
nodes. The responses of DRM can then be obtained. The near-
optimal quadrature method can be found in Ingerman et al.
(2000) and Li et al. (2016), the details are also given in the
Appendix.

3. Numerical experiments

There are generally two kinds of measurements delivered by the
DRM: apparent resistivity and geosignal logs (Wang et al., 2019; Li
et al., 2020). Typically, in LWD applications, a basic configuration,
which comprises one coil transmitter and two coil receivers, is
employed to measure the apparent resistivity logs (Fig. 4a). The
phase-shift (PS) and attenuation (Att) are defined as:

PS¼ tan�1ImðVR1Þ
ReðVR1Þ

� tan�1ImðVR2Þ
ReðVR2Þ

(18a)

Att¼ � 20 log10

�
absðVR2Þ
absðVR1Þ

�
(18b)

where VR1 and VR2 are the voltages induced in the first and second
coil receivers, respectively. The PS and Att signals are calibrated to
phase-shift resistivity (RA) and attenuation resistivity (RP) logs,
respectively, using a relationship established in the homogeneous
medium (as shown in Fig. 5). Fig. 5 also validates the results of the
2.5D algorithmwith the analytic solutions in the isotropic medium.

Commonly, a basic coaxial-transmitter, tilted-receiver configu-
ration is employed to measure the geosignal (Fig. 4b). The phase-
shift (GP) and amplitude-attenuation (GA) geosignals are calcu-
lated from the phase-shift and amplitude-ratio of two measure-
ments with tool azimuth differing by 180� [1]. For example, we use
b1 ¼ 0�, b2 ¼ 180� to denote the up (x) and down (-x) directions the
receiver is pointing to during rotation. The GP and GA geosignal are
then defined as:

GP¼ tan�1Im
�
Vb1

�
Re

�
Vb1

� � tan�1Im
�
Vb2

�
Re

�
Vb2

� (19a)

GA¼ � 20 log10
abs

�
Vb1

�
abs

�
Vb2

� (19b)



Fig. 4. Basic configurations, which can provide resistivity (above) or geosignal (below). (a) One transmitter (T) e two receivers (R) structure; (b) Axial transmitter (T) e tilted
receiver (R) structure, which can deliver geosignal.

Fig. 5. Validation of the 2.5D algorithm in isotropic homogeneous medium. (a) Conversion chart for 36 in spacing, 2 MHz, and 400 kHz PS measurements; (b) Conversion chart for
36 in, 2 MHz and 400 kHz Att measurements; Relative errors between the 2.5D algorithm results and the analytical solutions (c) for 100 kHz e 40 in. configuration; (d) for 2 MHz e
22 in. configuration.
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In the following of this section, we will validate the proposed
2.5D method in the TI medium, the full anisotropic medium, and
layered anisotropic medium. Then, the responses of DRM in a
complex fault structure are simulated.

In the following of this section, we will validate the proposed
2.5D method in the TI medium, the full anisotropic medium, and
layered anisotropic medium. Then, the responses of DRM in a
complex fault structure are simulated.
3.1. Validation in the transverse isotropic (TI) medium

The H components are modeled using the 2.5D algorithm in the
TI medium and validated against the analytic solutions (Løseth and
254
Ursin, 2007; Hong et al., 2013). A single transmitter-receiver pair,
with a spacing of 2 m, is in a homogeneous TI medium. The
transmitter and receiver are assumed to be magnetic dipoles. Fig. 6
presents all the H components induced in the receiver dipole when
the transmitter is radiating a 100 kHz time harmonic signal. In this
case, the horizontal and vertical resistivities are 1.0 U m and
10.0 U m respectively. The transmitter and receiver are both set to
be magnetic dipoles, and the positions are �1.0 m and 1.0 m,
respectively. The tool operation frequency is 100 kHz. The x-axis is
the relative dip angle between the tool and the horizontal re-
sistivity direction. The good agreement between the 2.5D results
and analytic solutions indicates the effectiveness of the proposed
method in the TI medium.



Fig. 6. The H components responses vs. dip angle in TI medium. (a) Vxx component; (b) Vxz and Vzx components; (c) Vyy components; (d) Vzz components. The first and second
subscripts are the directions of the transmitter and receiver, respectively.

Fig. 7. A three-layer full anisotropic model.
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3.2. Validation in the full anisotropic medium

As illustrated in subsection II.C, the proposed method can be
easily extended to the full anisotropic medium. We established a
three-layer model whose conductivity tensors are full anisotropic,
meaning all the elements are non-zero. The upper and lower layers
are semi-infinite and the middle layer is 5 m thick. A well pene-
trates the model with a 75� relative dip angle (Fig. 7). All the three
layers are full anisotropic. Note that though some elements in the
255
conductivity tensor are negative, they remain positive-defined
matrices. The transmitter and receiver are assumed to be mag-
netic dipoles, with a spacing of 2 m. The tool operation frequency is
100 kHz. The simulated results are shown in Fig. 8, validated with
the results computed using a commercial software with a 3D
model. Note that the first and second subscripts of the components
are the directions of the transmitter and receiver dipoles,
respectively.



Fig. 8. Validation of 2.5D FD code in full anisotropic medium.
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Table 1
Parameters of Oklahoma formationmodel used in Fig. 9. NL represents the number of layer, H is the thickness of the layer and Rh (Rv) is the horizontal (vertical) resistivity of the
layer.

NL H, m Rh, U$m Rv, U$m NL H, m Rh, U$m Rv, U$m NL H, m Rh, U$m Rv, U$m

1 3.716 1 1 10 1.524 120 300 19 1.524 7.5 30
2 5.486 10 30 11 2.134 4 20 20 1.229 0.9 0.9
3 2.438 0.4 2 12 5.486 150 500 21 1.219 2 10
4 1.219 3 10 13 2.438 40 40 22 1.219 10 30
5 0.914 0.9 5 14 2.134 1.5 1.5 23 0.914 1.8 5
6 2.134 20 50 15 2.743 100 300 24 0.610 20 100
7 1.219 0.7 3 16 1.524 18 18 25 0.610 7.5 7.5
8 1.829 100 200 17 1.219 100 200 26 0.610 15 80
9 0.914 6.5 20 18 0.914 1.5 5 27 2.088 0.7 0.7

Fig. 9. The responses of DRM in Oklahoma (OK) model. (a) 16 in e 2 MHz PS and Att resistivities; (b) 40 in e 400 kHz PS and Att resistivities; (c) 34 in e 400 kHz and 96 in e

100 kHz GP signal; (d) 34 in e 400 kHz and 96 in e 100 kHz GA signal. The parameters of the formation are listed in Table 1. H, L, and M represent the high frequency, low frequency,
and medium frequency, respectively.
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3.3. DRM's responses in a planarly layered model

In this subsection, we simulate the responses of a typical DRM
tool, which can provide multiple resistivity and geosignal logs,
using the proposed method in a more realistic “Oklahoma” (OK)
formation model. The OK model consists of a set of alternating
conductive and resistive layers (27 in total) with thicknesses (D)
ranging from 0.6 m to 5.5 m (as shown in Table 1). Resistivity varies
from 0.4 U m to 500 U m. The upper and lower layers are assumed
to be semi-infinite. The relative dip angle between the well and the
formation is 75�. We employed a 3.5 m length depth window,
which enables us to model multiple measure points at the same
time (four points if the spacing is set to 0.2 m in true-vertical-depth
(TVD)). The computational domain is a 5d � 5d rectangle (d rep-
resents the skindepth), it is composed of two parts: the depth
window and the remaining domain outside the window. Within
the window, uniform grids are used, while outside the window,
non-uniform meshes are adopted. The tool has three operation
frequencies: 2 MHz, 400 kHz, and 100 kHz. The direct solver en-
ables the simulation of each frequency in a depth window, which
includes a total of nearly 100 transmitter-receiver pairs, in 20 s on
an i7-6600U processor. Validation by analytic solutions shows that
the proposedmethod can handle high-contrast conductivity profile
as well as thick layers (see Fig. 9).
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3.4. Fault model

To further showcase the performance of the proposed method,
we simulate the responses of DRM in a fault-structure model
(Fig. 10a). A similar model is used by Chaumont-Frelet et al. (2018).
The model contains a 5 m thick layer that is partially saturated with
oil (above) and water (below). The layer has a 6� dip angle (q1) with
respect to the x’-direction. The model features two geophysical
faults, which have a relative angle q2 ¼ 40� with respect to the z’-
direction, which are separated by 20 m. The oil and water-bearing
layers and both the upper and lower shoulders are anisotropic. The
resistivities are shown in Fig. 10a. A synthetic well drills into the
reservoir, tracks the oil-bearing layer, and penetrates both faults.
The inclination of the well trajectory ranges from 55� to 120�. The
resistivities and geosignals are presented in Fig.10b to d. It shows
that the proposed method can accommodate complex geologic
structures as well as complex geometric relationships between the
formation and the well trajectory.
4. Conclusion

In this paper, we presented a 2.5D Finite-Difference (FD) algo-
rithm based on the Lebedev grid to model the responses of direc-
tional logging-while-drilling (LWD) resistivity measurement



Fig. 10. The fault model and corresponding DRM responses. (a) the fault formation and well trajectory; (b) the 16 in e 2 MHz PS and Att resistivities and 40 in e 400 kHz PS and Att
resistivities; (c) 34 in e 400 kHz and 96 in e 100 kHz GP signal; (d) 34 in e 400 kHz and 96 in e 100 kHz GA signal.
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(DRM). We have shown that in borehole electromagnetic (EM)
applications, two subgrids are sufficient for 2.5D anisotropic sce-
narios. Furthermore, the method can be easily extended to the full
anisotropic media. The near-optimal quadrature method is used to
achieve the fast inversion Fourier Transform. Numerical examples
show that the 2.5D FD algorithm based on Lebedev is accurate for
DRM modeling. By using the depth window strategy, the efficiency
improves significantly since the simulation of multi-sources at
nearly the cost of simulating a single source for each frequency. We
have to emphasize that the 2.5D Lebedev grid is a considerable
258
approach for EM modeling even though it may lead to more un-
knowns than the traditional Yee grid.
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Fig. A. 1 Relative error of |Rn(s)/F(s) � 1|.
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APPENDIX

Near-optimal Quadrature for fast IFT.
In this appendix, we derive the near-optimal quadrature

method needed to convert the spectral domain field to the spatial
domain.

Eq. (6) in full anisotropic medium can be expressed as

V�V� E � u2
εmE ¼ iumJs � V�M; (A-1)

In Cartesian coordinates, Eq. (A-1) can be expressed as

v2

vy2
Eðx; y; zÞ¼T $Eðx; y; zÞ � Fðx; y; zÞ; (A-2)

Here, F ¼ iumJs � V� M;
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(A-3)

By applying the Fourier transform, Eq. (A-2) becomes:

�k2yE
�
x; ky; z

�¼T
�
ky
�
$E

�
x; ky; z

�� F
�
x; ky; z

�
; (A-4)

where TðkyÞ,Fðx; ky; zÞ are the Fourier transforms of T , and F . By
substituting Eq. (12a) to Eq.(A-4), we have:

Eðx;0; zÞ ¼ 1
4pi

ð∞
�∞

ds
1ffiffi
s

p 	
sI � T

�
i

ffiffi
s

p � 
�1
F
�
x; i

ffiffi
s

p
; z
�
; (A-5)

where
ffiffi
s

p ¼ � iky. Using rational function (Ingerman et al., 2000; Li
et al., 2016); i.e.

1ffiffi
s

p ¼
XN
n¼1

wn

s� sn
; (A-6)

where sn and wn represent the sampling points and the weight,
respectively. Substituting Eq. (A-6) into Eq. (A-5) and applying the
residue theorem, we have:

Eðx;0; zÞ ¼ 1
4pi

XN
n¼1

wnEðx; i
ffiffiffiffiffi
sn

p
; zÞ

¼
XN
n¼1

wn½snI � Tði ffiffiffiffiffi
sn

p Þ ��1Fðx; i ffiffiffiffiffi
sn

p
; zÞ; (A-7)

here Eðx; i ffiffiffiffiffi
sn

p
; zÞ represents the solutions of the 2D problem in

Fourier Domain. In this paper, we use the two-interval strategy and
the Pade approximation to approximate the square root. For the
LWD EM applications, we choose the integration interval for quasi-
optimal sampling as ½ � 1:0; � 1:0e�5�∪½1:0e�5; 1:0�. To validate
259
Eq.(A-6), we compute the left side (Rn(s)) and the right side (F(s))
with respect to s, respectively. The relative error jRnðsÞ =FðsÞ�1j is
shown in Fig.A-1. It can be observed that all relative errors between
Rn(s) and F(s) are smaller than 1.0% within the full sampling section,
indicating that the rational function is reasonable.
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