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Abstract: Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. 
According to the quantitative analysis of the infl uence degree and occurrence probability of risk factors, 
the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes 
are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction 
model is established. In the prediction model, eight risk indexes are defi ned as input vectors and casing 
life is defined as the output vector. The ideal model parameters are determined with the training set 
from 19 wells with casing failure. The casing life prediction software is developed with the SVM model 
as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then 
compared with the actual casing life. The comparison results show that the casing life prediction software 
with the SVM model has high accuracy.

Key words: Support vector machine method, Borda method, life prediction model, failure modes, risk 
factors

Casing life prediction using Borda and 
support vector machine methods

1 Introduction
Casing failure is a result of a complex interaction among 

rock strength, pore pressure, casing program, cementing 
design, production, stimulation treatments, corrosion, 
earth stress, and engineering practice. Understanding the 
failure-causing factors can improve well planning, material 
procurement, field operations and increase the casing 
life. There are many empirical approaches for predicting 
casing life. However, they often are not very accurate 
and suffer from a number of drawbacks. Recently, robust 
modeling with a support vector machine (SVM) is gaining 
significant popularity for various advantages including 
powerful generalization performance and hence a plethora 
of applications are being considered, e.g. bank performance 
prediction (Ravi et al, 2008), bankruptcy predictions (Shin 
et al, 2005), financial forecasting (Kim, 2003; Ding et al, 
2008). Similar to the neural network based techniques, the 
SVM based modeling also involves training and testing of 
data instances such that the training set is comprised of target 
outcome variables by mapping several predictor variables. 
The advantages of SVM include strong inference capacity, 
generalization ability, fast learning capacity and ability for 
accurate predictions. The Borda method is characterized 
as a choice method when the preferences are expressed by 
means of linear orders (crisp, asymmetric, complete and 

transitive relations) (Young, 1974). In this paper, with the 
comprehensive consideration of casing failure modes and risk 
factors, the casing life prediction model is completed with 
SVM and Borda methods. 

2 Risk indexes calculation for casing failure 
modes based on the Borda method
2.1 Casing failure modes and risk factors

The casing failure modes mainly include casing burst, 
casing collapse, tensile failure, shear failure, slipping and 
sticking or galling of the threads, thread leakage, and casing 
instability (lateral deflection, i.e. buckling). The limit state 
equation based on different failure criteria is expressed as 
follows:

     (1)'

0, non-failure
0, failure
0, critical status

Z
Z P P Z

Z
where Z, P and P΄ are failure discriminant value, failure 
strength, and load stress, respectively.

In this paper, 32 risk factors that cause casing failure 
are summarized with a comprehensive consideration of 
geological conditions (Peng et al, 2007), casing program and 
cementing (Li, 2008), oil and gas production (Yu et al, 2009) 
and stimulation treatments, earth stress (Chiotis and Vrellis, 
1995), and casing corrosion (Carey et al, 2009). There are 
16 casing load-influencing factors (01-16) and 16 strength-
infl uencing factors (17-32) listed in Table 1.
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2.2 Failure probability
The probability distribution functions of the casing 

strength and the load are modeled as normal distributions. 
This implies that the casing failure probability and reliability 
can be computed from Eqs. (2) and (3), when the mean value 
and the standard deviation of the casing strength and the 
load applied are known. Details of these equations have been 
previously described (Christensen and Baker, 1982; Milton 
and Arnold, 1986; Rahman and Chilingarian, 1995).

(2)L RS
f f2 2

RS L

0P P Z Z  

f1R P                           (3)

where Pf and R denote the casing failure probability and 
reliability, respectively; μL and μRS are the mean values of 
the casing strength and the load applied, respectively; σL and 
σRS are the standard deviations of the casing strength and the 
load applied; Φ(▪) represents standard normal distribution 
function; Zf is the probability coeffi cient of the casing failure, 
Φ(Zf) can be directly obtained from a normal distribution 
table.

2.3 Borda count of each factor for casing failure
The relation between the reliability R and the influence 

grade are given, as shown in Table 2. The occurrence 
probability is divided into fi ve levels and the grade scores are 
listed in Table 3.

Table 2 Corresponding relation between the infl uence grade 
and the casing reliability

Infl uence
 grade

Grade 
score Defi nition or description Reliability

 %

Critical 5 Once the event occurs, it will result in the 
corresponding mode failure. 0-30

Serious 4-5
Once the event occurs, it will lead to a 
serious decline in safety performance of the 
corresponding mode.

30-60

Moderate 3-4
Once the event occurs, the corresponding 
mode is moderately affected and the casing 
strength still meets the basic requirements.

60-90

Minor 2-3
After the incident, it has little influence 
on the corresponding mode and the casing 
strength still meets the basic requirements.

90-99.999

Negligible 1-2 After the incident, there are no effects on 
the corresponding mode. >99.999

Table 3 Grade score interpretation of occurrence probability 

Occurrence probability, % Grade score Defi nition or description

0-10 1-2 Absolutely not occur

10-40 2-3 Rarely occur

40-60 3-4 May occur

60-90 4-5 Likely to occur

90-100 5 Very likely to occur

Table 1  A list of 32 risk factors that cause casing failure

Casing load-infl uencing factors Casing strength-infl uencing factors

01 Fluid pressure in the casing 17 Low compression strength

02 Pressure caused by high-pressure water injection and fracturing 18 Casing perforations

03 Fluid static pressure in the annulus between the production tubing and casing 19 Cement sheath with uneven thickness

04 Reservoir fl uid pressure 20 Manufacture and wear defects 

05 Tectonic earth stress 21 Poor cement quality and corrosion

06 Creep of rock salt and swelling of mudstones 22 Low collapse resistance

07 Gravity force acting on the lower part of the casing 23 Uniformly-distributed external load

08 Additional load from cementing operations 24 Poor sealing performance of casing threads

09 Ground settlement 25 Low tensile strength

10 Gravity force acting on the upper part of the casing 26 Ignoring shearing strength

11 Vertical earthquake load 27 Large centralizer spacing or centralizer failure

12 Large dip angle 28 Cavities caused by sand production

13 Faults and earthquakes that cause tangential stress on the casing 29 Low tensile strength of casing threads

14 Horizontal earthquake load 30 Poor-quality threads

15 Additional load from stimulation treatments 31 Low compression strength of casing threads

16 Axial load from formation expansion in the vertical direction caused by 
water injection in sandstone reservoirs 32 Low strength caused by high temperature and thermal stress
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Based on the quantitative grade scores of the influence 
degree and the occurrence probability, the Borda counts of 
risk factors for eight failure modes are obtained as follows 
(Lamboray, 2007):

(4)
2

1

k
ij ij

k

b r

where subscript i is the ith risk factor that causes casing 
failure, j is the jth casing failure mode; k denotes the 
evaluation criterion, k=1 represents the infl uence criterion and 
k=2 represents the probability criterion. 

After obtaining the Borda counts of 32 risk factors, the 
Borda matrix is expressed as follows:

(5)

11 12 1
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where m is the number of risk factors, m=32; and n is the 
number of failure modes, n=8.

2.4 Risk index of casing failure modes
The risk index represents the risk level priority associated 

with each failure mode. The Borda matrix elements are 
weighted according to the column averaging. The risk index 
for each failure mode is defi ned as follows:

(6)
1

m
j

j ij
i

a
d b

m

where dj represents the risk index corresponding to the failure 
mode j, 1 2 jd d dD  is a row vector of risk index; 
and aj represents the weight corresponding to the failure mode 

j.
The weight set A is determined according to engineering 

experience as follows:

1 2 8

T0.118 0.106 0.162 0.172 0.156 0.148 0.042 0.096

a a a
 

3 Casing life prediction model based on 
SVM

3.1 Theory of support vector machine
It is very difficult to develop a accurate correlation 

between the risk factors and the casing life. So, the support 
vector machine (SVM) method is proposed to predict the 
casing life in troublesome wells. The fitting function is 
defined as follows (Vapnik, 1998; Zhang, 2003; Sebakhy, 
2007):

           
(7)'' '
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where L is the total number of support vectors, xi represents a 
set of input vectors; y(x) refers to target vector, "

i , "
i and b0 

are undetermined coeffi cients in the SVM model.
In this paper, the radial basis kernel function is considered 

for SVM modeling.
Radial basis kernel function:

 (9)
2( , ) exp( )i iK x x x x

where  is taken as constant.

3.2 Basic computing units of casing reliability
Owing to the axial differences along the well casing, it is 

diffi cult to calculate the casing reliability as a whole. In this 
study, the casing is divided into several computing units with 
the differences among the well sections. The division criteria 
are summarized as follows:

1) Casing within the same unit has the same geometry and 
mechanical properties, and load change is linear. There must 
be one great difference among them within different units at 
least.

2) Easy to interface with the traditional calculation 
method and consistent with the actual engineering practice.

3.3 Input vector and output vector determination
Selecting the optimal input and output vectors is an 

important step in SVM modeling. It is very crucial for 
accurately predicting the casing life with SVM. The row 
vector D (risk index vector) obtained from Eq. (6) is defi ned 
as input vector, and the life of every unit is defi ned as output 
vector.

3.4 Training set selection and model parameter 
determination

Totally 19 wells with casing failure are selected and their 
basic data are listed in Table 4.

The 32 risk factors are extracted from the 19 wells with 
casing failure, and their corresponding Borda counts and the 
Borda matrix are computed from Eq. (4) and Eq. (5). The 
row vector D composed of eight risk indexes is derived from 
Eq. (6). Finally, 19 row vectors D from 19 wells and their 
corresponding actual lives compose the training set.

By comparing the predicted lives with the actual, the 
ideal model parameters can be conducted as follows: penalty 
coefficient C = 80000, calculation parameter of the kernel 
function  = 104.6 and control error ε = 0.06.

The lives of the original samples are predicted using the 
SVM model, and a comparison between the predicted values 
and the actual is shown in Fig. 1. This fi gure shows that the 
tested samples have an absolute deviation less than 1.00 year. 
So the model parameters given above is optimal.

3.5 Result output of casing life prediction 
In this paper, a SVM-based model is proposed to predict 

the casing life in troublesome wells. The casing life of each 
computing unit is obtained by inputting the corresponding 
row vector D into the life prediction model. Obviously, the 
minimum value of all units’ life is the ultimate casing life. 
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4 Development and validation of casing life 
prediction software 

4.1 Software development
The SVM model has been trained with actual data. 

The casing life prediction software is completed with the 
SVM model as the predictor. The software input parameters 
mainly include four categories: geological conditions, 
casing program and cementing, oil and gas production and 
stimulation treatments, and earth stress and casing corrosion. 
Thirty-two risk factors are considered in this software, such 
as rock properties and geologic position, existence of faults 
and oil reservoirs, casing nominal diameter, wall thickness, 
steel grade, weight, wear, cementing, perforation, water 
injection, fracturing, thermal recovery, acidifi cation and other 
stimulation treatments, earth stress, and casing corrosion.

First, the casing is divided into several computing units 
according to the axial differences of the casing material, the 
strength, and the load. Second, 32 risk factors are extracted 
from the input parameters. Based on the quantitative grade 

Table 4 Condition data from 19 wells with casing failure

Sample Damage depth
m Failure mode Casing structure at the failure location Formation lithology 

at the failure location
Actual 

life, Years
Predicted 
life, Years

1 952.5 Burst A single casing + mud outside the casing Argillaceous sandstone 5.93 5.44

2 1192.0 Collapse A single casing + external cement sheath Mudstone 9.02 8.91

3 1171.2-1185.9 Collapse A single casing + external cement sheath Rock salt 4.53 4.97

4 1159.0 Shear failure A single casing + external cement sheath Arenaceous shale 5.93 6.02

5 820.9-1160.7 Leakage A single casing + mud outside the casing Argillaceous sandstone 11.30 11.26

6 3175.9 Collapse A single casing + external cement sheath Argillaceous sandstone 8.39 8.25

7 1814.3 Burst A single casing + mud outside the casing Argillaceous sandstone 11.54 11.01

8 3025.0-3050.0 Leakage A single casing + external cement sheath Argillaceous sandstone 10.50 9.58

9 3324.1-3448.0 Collapse A single casing + external cement sheath Argillaceous sandstone 6.20 6.14

10 3206.5 Collapse A single casing + external cement sheath Sandstone 4.82 5.26

11 3078.6 Collapse A single casing + external cement sheath Rock salt 9.75 8.87

12 3518.0 Collapse A single casing + external cement sheath Mudstone 7.84 7.15

13 3099.9 Collapse A single casing + external cement sheath Rock salt 6.75 6.25

14 2285.0 Collapse A single casing + external cement sheath Mudstone 7.20 6.96

15 1143.4 Burst A single casing + mud outside the casing Arenaceous shale 4.93 5.51

16 1024.5 Shear failure A single casing + external cement sheath Shale 4.25 4.42

17 925.8-1206.1 Shear failure A single casing + external cement sheath Arenaceous shale 5.75 5.56

18 4685.0-4923.1 Leakage A double casing + external cement sheath Mudstone/limestone
/sandstone 8.62 8.32

19 4673.2-4801.4 Leakage A double casing + external cement sheath Argillaceous sandstone 7.56 7.50

Fig. 1 A comparison between predicted and actual casing life 
for the training set
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The basic structure of the casing life prediction model is 
shown in Fig. 2.
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scores of influence degree and occurrence probability, the 
Borda counts of each risk factor for eight failure modes are 
obtained. Then the risk indexes of failure modes are computed 
with the Borda matrix. Finally, the life of each computing unit 
is predicted with the SVM model as predictor and the eight 
risk indexes as input vectors. The ultimate casing life is the 
minimum value of all units’ lives.

4.2 Validation
The residual life of 60 wells with casing failure is 

calculated with the developed program. Fig. 3 shows that 
59.2% of the tested samples have an absolute deviation less 
than 1.0 year and 67.8% of the tested samples have a relative 
deviation less than 25%. The comparison results indicate that 
the accuracy of the SVM model is high.

Fig. 2 Basic structure of the casing life prediction model based on SVM
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for calculating the casing failure probability. Based on the 
quantitative grade scores of the influence degree and the 
occurrence probability, the risk index for each failure mode is 
obtained with the Borda method.

2) The SVM method is proposed to establish a relationship 
between the risk factors and the casing life. For the casing 
life prediction model, eight risk indexes are defi ned as input 
vectors and the casing life is defi ned as the output vector. The 
ideal model parameters are obtained with the training set from 
19 wells with casing failure.

3) The casing life prediction software is developed with 
the SVM model as a predictor, and the main life prediction 
steps are introduced. Comparing the predicted life with actual 
value from 60 wells with casing failure, the accuracy of the 
prediction model is high.
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