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a b s t r a c t

Elastic waves are affected by viscoelasticity during the propagation through the Earth, resulting in energy
attenuation and phase distortion, in turn resulting in low seismic imaging accuracy. Therefore, visco-
elasticity should be considered in seismic migration imaging. We propose a Q compensated multi-
component elastic Gaussian beam migration (Q-EGBM) method to (1) separate the elastic-wave data
into longitudinal (P) and transverse (S) waves to perform PP-wave and PS-wave imaging; (2) recover the
amplitude loss caused by attenuation; (3) correct phase distortions caused by dispersion; (4) improve the
resolution of migration imaging. In this paper, to accomplish (2), (3), and (4), we derive complex-valued
traveltimes in viscoelastic media. The results of numerical experiments using a simple five-layer model
and a sophisticated BP gas model show that the method presented here has significant advantages in
recovering energy decay and correcting phase distortion, as well as significantly improving imaging
resolution.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

During the propagation of seismic waves through the Earth,
the influence of viscoelastic media can cause attenuation of
seismic wave energy and phase distortion, reducing the resolution
of seismic imaging. This can harm the quality of the image and
consequently cause difficulties in the interpretation of seismic
data.

Hargreaves and Calvert (1991) proposed a Fourier transform-
based one-dimensional model inverse Q filtering method for
amplitude preserving imaging, but this method does not apply to
cases where the Q varies laterally. Mittet et al. (1995) presented a
method for including absorption effects in prestack finite-
difference migration schemes, which reduces dissipation of
seismic energy and diminishes phase distortion. However, the
method is in principle unstable since it may support waves with
exponential growth in depth. To improve seismic imaging reso-
lution and signal-to-noise ratio, Wang (2006) implemented stable
inverse Q filtering, applying stabilization only to the amplitude
compensation operator of a full inverse Q-filter (no phase
correction). Kirchhoff migration with Q compensation (Traynin
y Elsevier B.V. on behalf of KeAi Co
et al., 2008) based on ray theory proved to be capable of calcu-
lating frequency-dependent traveltimes and handling moderately
complex velocity models. Xie et al. (2009) used a three-
dimensional tomographic amplitude inversion approach to esti-
mate the absorption model, which was used in subsequent Q-
compensated migration, resulting in mitigated frequency-
dependent dissipation effects. For P-wave data, seismic data
compensation for frequency-dependent absorption and disper-
sion is well addressed by the Gaussian beam summation method
migration (Bai et al., 2016).

Gaussian beam migration (GBM) is a flexible and efficient
migration method that combines computational efficiency with
imaging accuracy. It solves caustic problems encountered by
Kirchhoff migration, while preserving the dynamics of the
wavefield, and is highly adaptable. Popov (1982)'s method for
calculating wave fields using Gaussian beams, used to solve the
three-dimensional Helmholtz equation point-source problem,
enables us to compute those through arbitrary ray caustics
without introducing any special functions. After �Cervený et al.
(1982) introduced an asymptotic approach based on Gaussian
beam wavefield simulations to calculate transverse wavefields,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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the use of downward continuation of the Gaussian beam made it
possible to solve the wave equations for seismic propagation (Hill
and Ross, 1990). The method retains an explanatory ray-path
description of this propagation. To describe the efficiency of the
Gaussian beam migration calculation and to highlight its ad-
vantages, Hale (1992a, 1992b) analyzed the relationship between
the Gaussian beam migration and the Kirchhoff migration.
Gaussian beam migration of common shot and common receiver
data (Nowack et al., 2003) was later investigated to solve the
problem of poor sampling of the sources or receivers. Based on
previous Gaussian beam migration which only emphasized ki-
nematic imaging capabilities, true amplitude Gaussian beam
migration imaging (Gray and Bleistein, 2009) combined a con-
ventional Gaussian beam migration with a true amplitude wave-
equation migration. The method uses the Gaussian beam prop-
agation operator as the core of the linearized forward simulation
and the migration. Casasanta and Gray (2015) introduced a
common-shot (or common-receiver) beam migration imple-
mentation, which allows the migration of datasets rich in azi-
muth, without any regularization pre-processing required. The
method solves the problem that sparse acquisition geometries
cannot easily meet the requirements for common-offset, com-
mon-azimuth (or common-offset-vector) migration. Least-
squares Gaussian beam migration (LSGBM) (Hu et al., 2016)
provides an optimal estimate of subsurface reflectivity. Yang et al.
(2018) performed simultaneous extrapolation of P- and S-mode
wavefields using the Kirchhoff-Helmholtz integral solution of the
isotropic elastic equations to achieve a common-shot elastic
wave Gaussian beam migration. The method can generate clear
PP images and avoid the polarity reversal problem in PS images.
The least-squares method and the elastic wave Gaussian beam
migration method were then combined to present the elastic
wave least-squares Gaussian beam migration method (Yue et al.,
2019). This method results in crosstalk-attenuated multi-wave
images with better subsurface illumination and higher resolution
than conventional elastic Gaussian beam migration methods. The
present paper extends the previous work to viscoelastic media.
We present expressions for complex-valued velocity and
complex-valued traveltimes in viscoelastic media. We show how
to remove the influence of amplitude attenuation and waveform
dispersion by reversing the sign of attenuation- and dispersion-
related terms in the complex-valued traveltimes in the Green's
function, allowing us to achieve an amplitude-compensated
migration. We stabilize the compensation by applying a smooth
and maximum-limited gain function (Zhang et al., 2013). We
apply this Q-compensation to produce a multi-component elastic
Gaussian beam migration algorithm for viscoelastic media using
a source-normalized cross-correlation imaging condition.

The rest of this paper is organized as follows: First, based on
Gaussian beams and the Green's functions in elastic media, we use
the source-normalized cross-correlation imaging condition to
derive the imaging equations for elastic media. Then, we obtain
the complex-valued traveltimes in viscoelastic media and solve
the stability problem. Next, we derive the imaging equations for
Gaussian beams in viscoelastic media by combining the effect of
viscoelastic media on Gaussian beams with the imaging equa-
tions. Finally, we demonstrate the accuracy of the method in this
paper using a simple five-layer model and a more complex BP gas
model.

2. Methodology

2.1. Elastic Gaussian beam migration

According to Yue (2011), the expressions for P- and S-waves
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recorded wavefields upmðx; xr;uÞ and usmðx; xr;uÞ are
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The expression for the source wavefield is
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Here: superscripts p and s refer to P-mode and S-mode, xs is the
source location, xr is the receiver location, x is the image point, L is
the horizontal coordinate of the beam center, DL is the beam
center spacing, u is the angular frequency, p1 and p2 are the
horizontal and vertical components of the slowness vector at the

initial position of the Gaussian beam, r is the density, bup*
m and bus*

m
are the expressions for P-wave and S-wave Gaussian beams
(�Cerveny and P�sen�cík 1983a; �Cervený and P�sen�cík, 1983b; 1984),
vp is P-wave velocity, w0 is the initial beam width of the Gaussian
beam, which can be obtained fromHill and Ross (1990, 2001), ur is
the reference frequency (Hill and Ross, 1990, 2001), i is an imag-
inary unit, Dv

nðL; pvx;uÞ (Xu et al., 2014) is a windowed local tilt
superimposition of multi-component seismic records of different
waveforms:
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Here, weight coefficients Wv
1ðLÞ, Wv

2ðLÞ (Xu et al., 2014) are
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Then, we use the source-normalized cross-correlation imaging
condition (Claerbout, 1971; Kaelin and Guitton, 2006), which is
equivalent to the deconvolution imaging condition using a
matched filter in the frequency domain (Lee et al., 1991). This
imaging condition is different from the modified dot-product
imaging condition of Yang et al. (2018). Yang et al. (2018)'s im-
aging condition does not need polarity correction while the im-
aging condition here is more conducive to the comparison of
imaging results, which is more convincing. The equations for PP
wave and PS wave imaging are



Fig. 1. The formation of the PeS converted wave.
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When imaging the converted wave, the converted wave PeS
imaging can show a polarity reversal in the migration profile due
to different polarization directions. Fig. 1 shows the formation of
the PeS converted wave (Du et al., 2012). a is the incidence angle of
the P-wave relative to migration dip. In Fig. 1, in the case that
positive directions are counterclockwise and right, when the inci-
dent P-wave reaches O1 and O2, because a1 <0 and a2 > 0, the PeS
converted wave generated at point O1 has a negative horizontal
displacement component and the PeS convertedwave generated at
point O2 has a positive horizontal displacement component, in turn
causing the horizontal component seismic recordings received at
points R1 and R2 to have opposite polarities. Therefore, we correct
the imaging results according to the positive or negative angle of
incidence a of the P-wave. A sign function sgnðaÞ is introduced to
correct the sign of the incident angle of the P-wave, and the
polarity-corrected PeS imaging equation takes the following form:
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2.2. Viscoelastic Gaussian beam migration

Within the frequency band of seismic exploration, the quality
factor Q, which characterizes the strength of the viscosity, can be
seen as frequency independent, i.e., the constant Q model can be
used. In this way, the propagation of the acoustic wave in viscoa-
coustic media can be seen as it propagates with a complex velocity
in acoustic media. In weakly viscous media (1Q≪1), the complex

velocity can be expressed as (Aki and Richards, 2002)

vðx;uÞ ¼ v0ðxÞ
�
1þ i

2
Q�1ðxÞ þ 1

p
Q�1ðxÞlnðu=urÞ


(10)

Here: vðx;uÞ is the complex velocity in viscoacoustic media, v0ðxÞ is
the velocity in acoustic media, Q is a quality factor, In Eq. (10), the
dispersion reference frequency ur is arbitrary, best chosen to be
near the geometric mean of the lowand high frequencies present in
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the data. Here, we choose ur to be the same as the Gaussian beam
reference frequency. In viscous media, Eq. (10) expresses an
inherent dispersion relation, and the exponential attenuation of the
energy of an elastic wave as it travels along the ray is due to the
imaginary part of the complex velocity. The dispersion term in the
real part of the complex velocity, on the other hand, ensures the
accuracy of the solution to the wave equation. Q does not affect the
ray path; it only affects the waveform by changing the complex-
valued traveltime (Halliwell, 1991; Henk et al., 2001).

Similarly, the propagation of the elasticwave in viscoelasticmedia
can be seen as it propagates with a complex velocity in elasticmedia.
The expressions for the complex velocity of P- and S-waves are8>>><>>>:
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Here: VPðx;uÞ and VSðx;uÞ are complex velocities in viscoelastic
media, VP0 and VS0 are velocities in elastic media, QP and QS are
quality factors.

The full expressions for complex-valued traveltimes TPðx;uÞ and
TSðx;uÞ can be obtained from the complex velocity:8>><>>:
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Here: TP0 ðxÞ and TS0 ðxÞ are complex-valued times in elastic
media, T 0

PðxÞ and T 0
SðxÞ are real-valued factors that provide atten-

uation and dispersion effects. During forward propagation, the
second terms on the RHS of Eq. (12) produce exponential amplitude
decay along a ray as it propagates forward in time; reversing the
sign of these terms will compensate for the amplitude decay by
applying an exponential gain. The third terms on the RHS of Eq. (12)
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produce a phase shift (stretch) of the propagating wavelet; this is
the effect of dispersion, and its effect is also compensated (squeeze)
by reversing the sign of these terms. For the downward continua-
tion of the recorded wavefield, time-reversal (negating the first
terms of Eq. (12)) is also needed. So, for the recorded wavefields,
reversing the signs of all terms on the RHS of Eq. (12) for either
TPðx;uÞ (PeP migration) or TSðx;uÞ (PeS migration) accomplishes
Q-compensated downward continuation. However, the P-wave
source wavefield propagates forward in time, so the first term on
the RHS of Eq. (12) for TPðx;uÞ should not be negated for its
downward continuation. But the source wavefield undergoes
attenuation and dispersion, which need to be compensated. This
compensation is accomplished by reversing the signs of the second
and third terms on the RHS of Eq. (12). Therefore, the net effect of
Q-compensation for the final migration formula is the application
of amplitude and phase compensations along the entire source to
receiver raypath. This fully accomplishes Q-compensation; no extra
Q-dependence for source normalizations applied in the cross-
correlation imaging condition should be applied.

Fig. 2 illustrates the forward modeling and migration in elastic
and viscoelastic media. In Fig. 2, TP

Ls
, TSLr and TPLr are complex-valued

times in elastic media, TP0
Ls
, TS

0
Lr

and TP
0

Lr
are the second and third

terms on the RHS of Eq. (12), Ls and Lr indicate the distances along
raypaths from the image point to the source and the detection
point, respectively.

To stabilize the amplitude compensation, we take P-wave as an
example to solve the problem of stability. � i

2T
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PðxÞ and

�1
pT

0
PðxÞlnðu=urÞ of Eq. (12) represent the energy absorption and

phase shift, respectively. Viscosity affects the waveform through a
frequency-dependent dissipation function (Henk et al., 2001):
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where exp
�
u
2T

0
PðxÞ

�
is energy compensation factor. To eliminate the
Fig. 2. The forward modeling and migration in elastic and viscoelastic media. (a) forward m
viscoelastic media.
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stability problem, we apply a smooth and maximum-limited gain
function proposed by Zhang et al. (2013) to replace the energy
compensation factor with a gain function 4ðhÞ:

4ðhÞ¼

8>><>>:
expðhÞ; h � lnðGÞ ;

G
h
1� ln G� 2:5ðln GÞ2

i
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where h ¼ u
2T

0
PðxÞ, and G is a predefined gain limit. When h in-

creases, the 4ðhÞ will not increase infinitely, but will be close to a
constant, i.e., the 4ðhÞ follows the exponential gain of Eq. (14) until
it approaches a predefined maximum gain, then smoothly transi-
tions to the maximum gain.

The P- and S-waves fields can be compensated by reversing the
signs of the second and third terms on the RHS of Eq. (12). In the
case of migration, we obtain the multi-component elastic Gaussian
beam migration imaging method for viscoelastic media by replac-
ing the traveltimes of the elastic wave Gaussian beam with this
complex-valued traveltimes and reversing the sign of this term.

3. Numerical examples

3.1. Simple five-layer model

First, we use a simple five-layer model, which has 301 � 201
grid points with a horizontal grid spacing of 10 m and vertical grid
spacing of 10m to evaluate thismethod. There is a high-attenuation
gas-bearing wedge in the third layer. Fig. 3 displays the model
parameters, including P-wave velocity Fig. 3a, S-wave velocity
Fig. 3b, P-wave quality factor Fig. 3c, and S-wave quality factor
Fig. 3d. An explosive P-wave source with a 25 Hz Ricker wavelet is
excited at the free surface. The shot spacing is 50 m, and each shot
has 301 receivers with 10 m receiver spacing. The sampling time is
3 s with a 1ms time interval. For the forward simulation, we use the
odeling and (c) migration in elastic media; (b) forward modeling and (d) migration in
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elastic and viscoelastic high-order staggered grid FD methods (Mu
et al. 2021a, 2021b) to generate 60 shot gathers. The modeled
horizontal x- and vertical z-component data of the 30th shot at
xs ¼ 1460 m are shown in Fig. 4aed, respectively. Fig. 5a and b
shows single trace comparisons selected from Fig. 4 of the x-
component and z-component. We can see that the energy of the
viscoelastic forward modeling is significantly lower than that of the
elastic wave forward modeling, showing how the viscosity absorbs
and attenuates the seismic wave during propagation. Elastic wave
Gaussian beam migrated image for elastic data (reference image),
elastic wave Gaussian beam migrated image (non-compensated)
for viscoelastic data and viscoelastic Gaussian beam migrated im-
age (compensated) are exhibited in Fig. 6.

Compared with the reference images in Fig. 6a and d, non-
compensated images in Fig. 6b and e exhibit weaker reflective
event energy, especially the layers beneath the high-attenuation
gas-bearing wedge. We can also see that the compensated images
in Fig. 6c and e are close to the reference images, with overall
properly recovered amplitudes, e.g., PP and PS-images carry similar
amplitude and phase information to those of the references. Amore
detailed comparison was made by extracting single traces from
Fig. 6. Fig. 7 shows the single trace comparison extracted from PP
and PS images. Here, the compensated trace (the blue line) is closer
to the reference trace (the red line) than the uncompensated trace
(the green line), which has a smaller amplitude, and its attenuated
amplitude and distorted phase are restored acceptable.
3.2. BP gas model

Next, a more complicated BP gas model (Yang and Zhu, 2019)
with a high-attenuation chimney is considered to further test our
algorithm. The P- and S-wave velocity models, and P- and S-wave Q
models are shown in Fig. 8. All the models have 451 � 226 grid
points with a grid spacing of 10m in the x-direction and 10m in the
Fig. 3. Simple five-layer models. (a) P-wave velocity model; (b) S-w
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z-direction. A Ricker wavelet with a 15 Hz dominant frequency is
excited as the source wavelet. There are 90 shots with a 50 m
spacing interval and 451 receivers with a spacing of 100 m. The
sampling time is 3 s with a 0.8 ms time interval. Elastic and
viscoelastic high-order staggered grid FD methods for forward
simulation are employed to generate the gathers.

Fig. 9 shows the elastic wave Gaussian beammigrated image for
elastic data (reference), elastic wave Gaussian beam migrated im-
age (non-compensated for viscoelastic data), and viscoelastic
Gaussian beam migrated image (compensated). As can be seen
from the area in the blue box, the images below the attenuating
chimney in Fig. 9b and e are blurred, and the energy is weak, while
the images below the chimney in Fig. 9c and f are significantly
improved, and the energy is better recovered. Compared to the
uncompensated image, which is indistinct, the bulges on the sides
above the anticlinal structure indicated by the arrows in the
compensated image are more clearly visible and almost match the
reference image. In addition, we also get ADCIGs at the horizontal
location of 1000 m. As can be seen from Fig. 10, the event axis are
basically flat. Compared with the compensated ADCIG, the deep
energy of the uncompensated ADCIG is weaker. The comparison of
ADCIGs shows the accuracy of the method in this paper.

Single migrated traces at the horizontal location of 2550 m are
selected from Fig. 9 for the more detailed comparison. As shown in
Fig. 11, the compensated single trace matches the reference trace,
while the uncompensated trace has a significant amplitude loss.
Fig. 12 exhibits the average wave number spectra corresponding to
the images of Fig. 9, from which it can be seen that the compen-
sated image (blue line) has a higher resolution than the uncom-
pensated image (green line), almost approaching the reference
image resolution (red line). In conclusion, the method in this paper
overcomes the negative impact of viscoelasticity on image quality
and improves image quality and resolution.
ave velocity model; (c) P-wave Q model; (d) S-wave Q model.



Fig. 4. 30th shot gathers at xs ¼ 1460 m using elastic and viscoelastic modeling methods. (a) elastic FD-modeled x-component; (b) elastic FD-modeled z-component; (c) viscoelastic
FD-modeled x-component; (d) viscoelastic FD-modeled z-component.

Fig. 5. Single trace comparisons. (a) x-component; (b) z-component.
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Fig. 6. The migrated images. PP-images. (a) reference EGBM using elastic data; (b) EGBM using viscoelastic data; (c) Q-EGBM using viscoelastic data. PS-images. (d) reference EGBM
using elastic data; (e) EGBM using viscoelastic data; (f) Q-EGBM using viscoelastic data.

Fig. 7. Single trace comparisons at horizontal locations of 750 m. (a) PP-image; (b) PS-image.
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4. Discussion

The presence of viscosity causes energy attenuation and phase
distortion during the propagation of seismic waves, causing great
difficulties in seismic interpretation. The inverse Q filtering method
was first proposed to address the effects of viscosity, but it does not
consider both lateral and vertical variations in Q and cannot accu-
rately image complex structures (Bickel and Natarajan 1985;
Hargreaves and Calvert, 1991; Wang, 2002). The attenuation
compensation method based on ray theory, which only considers
the kinematic characteristics of seismic waves, is less satisfactory
for imaging complicated media (Zhang and Wapenaar, 2002;
Traynin et al., 2008; Xie et al., 2009; Zhang et al., 2013). Attenuation
compensation methods based on wave equations enable better
236
imaging of the subsurface media but are less computationally
efficient than laterally invariant methods (Mittet et al., 1995; Mittet,
2007; Valenciano et al., 2011; Wang et al., 2012). The multi-
component elastic Gaussian beam migration method based on
attenuation compensation in this paper has a more accurate im-
aging accuracy. The method has three key points: First, based on
the elastic Gaussian beams and the corresponding Green's func-
tions, the imaging equations are obtained according to the source-
normalized cross-correlation imaging condition that is more
conducive to the comparison of imaging results. Second, based on
the complex velocity of the Gaussian beam during propagation in
viscoelastic media, the complex-valued traveltimes affecting the
propagation waveform of the Gaussian beam were presented.
Finally, the multi-component elastic Gaussian beam imaging



Fig. 8. Complicated BP gas models. (a) P-wave velocity model; (b) S-wave velocity model; (c) P-wave Q model; (d) S-wave Q model.

Fig. 9. The migrated images. PP-images. (a) reference EGBM using elastic data; (b) EGBM using viscoelastic data; (c) Q-EGBM using viscoelastic data. PS-images. (d) reference EGBM
using elastic data; (e) EGBM using viscoelastic data; (f) Q-EGBM using viscoelastic data.

C. Chen, J.-D. Yang, X.-R. Mu et al. Petroleum Science 20 (2023) 230e240
equations in viscoelastic media were obtained by replacing the
Gaussian beam traveltimes with the complex-valued traveltimes in
viscoelastic media. Using two models for testing, we showed that
237
the method presented here not only compensates for absorption
attenuation, but also improves resolution. However, compared to
the imaging accuracy of the method in this paper, it needs to



Fig. 10. PP-ADCIGs at the horizontal location of 1000 m. (a) reference EGBM using elastic data; (b) EGBM using viscoelastic data; (c) Q-EGBM using viscoelastic data. PS-ADCIGs at
the horizontal location of 1000 m. (d) reference EGBM using elastic data; (e) EGBM using viscoelastic data; (f) Q-EGBM using viscoelastic data.

Fig. 11. Single trace comparisons at the horizontal locations of 2550 m (a) PP-image; (b) PS-image.
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Fig. 12. Average wavenumber spectra shown in Fig. 9. (a) PP-image; (b) PS-image.
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consider computational efficiency. Meanwhile, perhaps we should
consider using a viscoacoustic deblurring filter (Aoki and Schuster,
2009; Chen et al., 2017) to solve the stabilization problem.

5. Conclusion

We propose a multi-component elastic Gaussian beam migra-
tion method applicable to viscoelastic media for amplitude atten-
uation and phase distortion of seismic wave propagation in
viscoelastic media. Compared to conventional acoustic migration
methods, the method in this paper considers the vectorial charac-
teristics of the waves and makes additional use of S-waves, which
are more sensitive to fluids. Numerical examples show that the
method can recover the energy of seismic wave propagation, while
improving the resolution of imaging in viscoelastic media.
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